登录注册
请使用微信扫一扫
关注公众号完成登录
当前的问题是,哪项技术将成为新一代太阳能技术?
(来源:微信公众号“贺利氏可再生能源”ID:Heraeus_Renewables)
仅采用单一吸收体材料的太阳能电池在提高转换效率方面的潜力非常有限,其效率增益空间主要取决于吸收体的禁带宽度。图1所示为热力学(细致平衡)效率极限与禁带的关系曲线。太阳能电池的热力学效率极限也叫肖克利-奎伊瑟(Shockley-Queisser)极限,以首次计算出该极限的两位物理学家命名。
图1:最大理论效率与吸收体禁带宽度的关系。[1]
在AM1.5标准光谱下,曲线上的最大值约为33%,对应的禁带宽度为1.1eV或1.4eV。不过,效率峰值分布的范围也比较广。当禁带宽度为0.9-1.7eV时,转换效率也可超过30%。因此,大多数太阳光吸收材料的理论效率极限均较为相近。
晶硅的理论效率极限约为32%。然而,如果稍微偏离理想条件,考虑到(不可避免的)俄歇复合(Auger-Recombination),晶硅的效率极限便会降至29%左右。
2017年,日本钟化集团(Kaneka)开发的一块180cm2太阳能电池创下了26.6%的转换效率世界纪录[2],已经比较接近理论极限。PERC电池(工艺改进)的转换效率记录目前由晶科保持,效率高达23.9%[3]。(注:此文为2019.1文章,目前PERC纪录由隆基保持)
未来5到10年内,晶硅太阳能电池将达到25%左右的效率极限。届时,在不影响其成本优势的前提下,电池量产技术将无法再进一步完善,这样晶硅太阳能电池技术就将失去主流技术所需要具备的经济可行性。晶硅电池达到上述极限的过程将相对容易,主要依靠不断降低光学损耗、电阻损耗以及最关键的复合损失。这一过程不需要任何“真正的”颠覆性技术。
那么,光伏行业的效率增益将会就此止步不前吗?会不会所有的改进措施都将依靠进一步降低成本(以及通过冷却等方法提高发电量)?
目前看来,唯一的办法似乎只有突破肖克利-奎伊瑟极限。原则上,有两种方法可以提高太阳能电池的理论效率极限:一是汇聚更多的太阳光;二是采用两种及以上禁带不同的吸收体材料。采用两种吸收体的电池称为“双结叠层电池”,超过两种吸收体的电池叫做“多结叠层电池”。
若要提高单个太阳能组件的发电量,最简单的方法之一就是使组件正反两面都能收集太阳光。相较单面电池组件,双面电池组件能够将光伏系统的发电量提高10-20%,但新增成本却微乎其微。在集中式光伏系统中,双面电池组件已是大势所趋,而且此类电站将是光伏装机项目中的主力军。
因此,在开发一项新的电池技术时,必须评估其与双面技术的兼容性。
聚光电池
首先,我们来看一下聚光电池技术。通过汇聚太阳光,会产生更多的载流子,同时其复合保持不变,这样开路电压就会升高,太阳能电池的转换效率也就随之提高。如图2所示,在理想条件下,电池效率随着辐照强度增强而呈对数增长。理论上来说,如果汇聚的太阳光增强1000倍,太阳能电池效率可提高约25%(相对值),电池效率极限可提高约7%(绝对值)。
图2:不同串联电阻下的电池效率与聚光比的关系
不过,在实际操作中,聚光存在许多限制,如光学损耗至少在15-20%、额外的电阻损耗、温度上升、入射接收角较小、成本高昂等。此外,聚光电池技术与双面技术也不兼容。因此,基于单结电池的聚光光伏系统在性能上不如未采用聚光技术的电池,并且成本还更高。我们不认为聚光电池是突破肖克利-奎伊瑟极限的可行技术。
双结叠层电池
双结叠层电池技术或多结电池技术旨在改善较宽的太阳光谱范围与单一半导体局限的吸收边限不相匹配的问题。图3所示为AM1.5G标准光谱。在禁带宽度为1.12 eV(约1100 nm)的晶硅太阳能电池中,能量较高(即波长较短)的光子全部被吸收,其剩余能量以热能的形式消散于晶格中——这一过程叫做热化。所有能量较低的光子均不被吸收,而是直接进入晶硅吸收体层。这些光子在背接触层被吸收并产生热量,或被反射或穿过组件。
图3:晶硅太阳能电池的光谱吸收和热损耗。[1]
图4描述了三结太阳能电池的结构:三种不同的材料串联叠放。禁带较宽的材料位于顶部,可吸收所有能量大于其禁带的光子,其它光子将进入下一层。在这一结构中,禁带较宽的材料所产生的载流子的能量(VOC)将比禁带较窄的材料所产生的载流子要高,因此可有效减少热损耗。添加一层禁带较窄的材料可吸收更多的低能量光子,从而提高产光生电流。
图4:三结太阳能电池及相应的吸光区域。[4]
如图5所示,双结叠层电池的理论(细致平衡)效率极限取决于其顶电池和底电池的禁带能量。二者的最佳组合是0.95eV和1.7eV,这时效率最大值可达46%左右。对于底电池材料来说,晶硅是一个非常不错的选择。配以禁带宽度为1.8eV的顶电池,转换效率可达44%左右。另外,双结叠层电池技术与双面电池组件技术相容。根据不同的反射率,晶硅底电池可通过背面额外收集10-20%的太阳光。对于双结叠层电池来说,这意味着顶电池的禁带宽度需要降低,从而使其产生更多的电流,确保顶电池和底电池的电流相匹配。因此,在采用晶硅底电池的双面双结叠层电池中,顶电池的禁带宽度最好降低至1.6eV左右。
图5:双结叠层电池的(细致平衡)效率极限[1]
理论上来说,双结叠层电池技术可以将晶硅太阳能电池的效率提高12%(绝对值)那么,双结叠层电池技术能为量产太阳能电池效率带来又一次飞跃吗?
采用III-V族半导体的双结叠层电池或多结电池已被证明具有超高潜力:其实验室效率已超过46%[5],量产效率约为40%。不过,III-V族半导体技术极其昂贵。其中,仅晶片成本就已经是硅片的200倍以上。因此,只有将太阳光的聚光量提高500倍左右,该技术才具有可行性。总而言之,由于成本过高,III-V族半导体技术目前依然无法与主流晶硅电池技术相抗衡。
长久以来,研发人员一直在寻找合适的吸收体材料来作为顶电池,与晶硅底电池搭配使用。图6显示了与效率为25%的晶硅底电池组合时,顶电池所需要达到的效率[6]。
若要实现接近30%的电池效率,当采用禁带宽度小于1.7eV的材料时,顶电池效率需要达到20%以上。到目前为止,研发人员还未找到合适的材料。碲化镉(CdTe)本来有望成为候选材料,但其禁带过窄,只有1.4eV。非晶硅和铜镓硒(CGS)的禁带宽度在1.7eV左右,比较合适,但其转换效率太低。半导体量子结构不仅不解决问题,还会引发新的问题。
图6:底电池效率不变,顶电池所需达到的效率。[6]
目前,顶电池有两种潜在候选材料:III-V族半导体和钙钛矿。那么,这两种候选材料各有何优劣?
首先,III-V族半导体顶电池可与晶硅底电池配合使用。由于晶格失配和温度收支现象,两种材料无法直接用外延法生长在一起。
目前,III-V族半导体顶电池与晶硅底电池的双结叠层组合已在实验室中达到了32.8%的转换效率[7]。不过,这种电池技术的成本比晶硅电池高出了一个数量级。用外延法生长在锗或砷化镓晶片表面,再进行剥离和转移,似乎是最可行的做法,不过这在技术和经济性方面是否可行,尚有待证明。图7所示为上述结构的截面示意图[8]。
目前,我们认为该技术在经济性上未达到量产标准。
图7:磷化镓铟/硅基双结叠层太阳能电池的结构示意图[8]
第二个选项是采用钙钛矿太阳能电池作为顶电池。近年来,全球各地的实验室在钙钛矿电池研发方面都取得了重大进展。钙钛矿单结电池的转换效率已超过20%。2018年6月,牛津光伏(Oxford PV)公司成功开发出效率高达27.3%的钙钛矿/硅基双结叠层电池,首次打破了单结晶硅电池26.6%的世界纪录[9]。
钙钛矿是一种前景非常广阔的吸收体材料。它们属于直接带隙半导体,因此其作为太阳能电池的吸收体材料时,厚度只需达到1 μm即可。禁带宽度的调整范围为1.5 eV左右至1.7 eV以上。而且,即便采用低成本沉积技术,也能实现出色的复合特性。其开路电压也正在逐步逼近肖克利-奎伊瑟极限。
钙钛矿太阳能电池在短时间内就能取得如此惊人的进展,着实令人印象深刻,但钙钛矿/硅基双结叠层电池在实现量产之前,还需要克服不少难关。
挑战1
最大的挑战就是如何确保钙钛矿电池的长期稳定性。标准组件可以在恶劣的户外气候条件下耐受25-30年,而钙钛矿在几分钟之内便会退化。不过,这方面目前也已取得显著进展:钙钛矿/硅基双结叠层电池与双玻组件技术相结合,可以通过DH1000或TC200试验[10]。目前,研发人员正在努力提高钙钛矿/硅基双结叠层电池抵抗紫外线辐射、湿气、高温和氧气的能力。
挑战2
第二项挑战在于要将不足1cm2的实验室级电池提升到正常硅片大小。这需要进行大量的工程设计,不过可以借助晶硅电池、薄膜电池及蓄电池生产中成熟的沉积技术,因此该项挑战不至于成为根本性障碍。
挑战3
钙钛矿通常含有铅、铯等剧毒元素。目前,这一点不会影响其在光伏组件中的使用,因为晶硅电池组件的焊带和金属化浆料中也含有铅。不过,未来新的法规也许会限制光伏组件使用有毒材料。如有需要,浆料和焊带中的铅可以轻而易举地找到替代品。但铅是构成钙钛矿的主要元素之一,目前还无法被取代。
钙钛矿/硅基双结叠层电池及组件结构
原则上来说,双结叠层电池组件有两种设计方法。一种方法是采用集成一体化结构:将底电池和顶电池集成在同一个电池片(如图8所示),再按照标准晶硅电池的工艺将双结叠层电池连接起来,形成电池组件。另一种方法是将顶电池和底电池分开,制成两个组件,然后再串联叠放并封装在一起。底电池组件的敷设多多少少有标准可循。顶电池组件可采用薄膜叠瓦技术。这种方法的优点在于顶电池和底电池之间不需要电流匹配,缺点在于接触和电池连接的工作量翻倍。
我们相信,在协同效应、成本和生产良率方面,第一种方法的前景更加光明。此外,就目前的生产技术而言,这种方法所需要的改动也少得多。因此,我们将重点关注一体化双端叠层电池。
图8:典型的一体化双结叠层电池结构[11]
底电池
底电池可以采用P型硅片或N型硅片。虽然大多数实验室项目都采用N型异质结电池,但P型电池其实也是可行的。其中,顶电池和底电池的极性需要相匹配,这一点至关重要。在集成一体化型电池结构中,顶电池通常采用“反型”结构,将P层作为底层。这意味着底电池也需要将P接触层作为底层,这一点可以通过背结N型电池或常规的P型电池来实现。
不论是N型电池还是P型电池,都需要在顶电池形成隧穿结以及一层(导电)光学层。底电池正面无需镀减反射膜,也无需金属化。由于底电池不导电,因此不适合采用标准氮化硅正面钝化工艺,可以选择晶硅/氧化铟锡(a-Si/ITO)异质结技术,或选择带ITO覆盖层的多晶硅钝化接触作为光学元件。
目前,钙钛矿沉积工艺还不适用于制绒表面,因此底电池的正面需要进行抛光。不过,只要背面是制绒表面,正面抛光只会造成些微损耗。
顶电池
顶电池通常采用反型结构,第一层为空穴传输层(HTL),可采用贺利氏生产的氧化镍或PEDOT:PSS。空穴传输层必须足够薄,以防止红外寄生吸收。
钙钛矿吸收体层的禁带宽度可调整至1.55-1.6 eV,以便用于双面电池。许多论文特别关注如何提高钙钛矿的禁带宽度,使其达到1.7-1.8 eV,并且设法解决宽禁带材料的潜在损耗较高这一问题。机缘巧合的是,在确定与双面电池相匹配的电流时,恰好可以选用最合适的钙钛矿种类。
对于电子传输层(ETL)来说,PCBM聚合物是一个不错的选择,其次是用于横向导电并作为减反射膜的ITO层。
金属化和电池连接
钙钛矿只能承受130-150°C的温度,因此无法采用温度高达900°C左右的标准烧结工艺,而必须用低温银浆取代标准银浆或铝浆。贺利氏可根据烧结温度和烧结时间的具体要求为客户提供定制浆料。
如果采用PERC电池作为底电池,那么目前还没有合适的低温铝浆。晶硅和铝的共晶温度为577°C,要在低于这个温度的情况下形成局部背场可能比较困难。因此,背面金属化必须在顶电池沉积之前完成印刷和烧结。不过,这种无法保证清洁度的金属化工艺(含粉尘及有机残留物)可能会对后续工艺及顶电池的质量产生不利影响。此外,还可以选择涂覆背银栅线,该工艺目前在双面异质结技术和隧穿氧化层钝化接触(TopCon)技术中均有使用。
在任何情况下,正面(和背面)的低温银栅线的电阻率均高于标准银栅线。因此,虽然电流减半,但建议选择多主栅(MBB)结构来降低串联电阻,减少银浆用量。多栅线连接和低温焊锡涂层有可能成为电池连接工艺的理想选择。此外,也可以考虑采用导电胶的叠瓦技术。贺利氏可根据固化温度的具体要求为客户提供定制导电胶。由于电流只有5A左右,半片电池组件很可能没有明显优势。
封装
相对来说,钙钛矿对湿度等环境因素更加敏感,因此优选双玻组件。考虑到近期1.5-2 mm玻璃取得的技术进步,对于任何双面组件来说,双玻结构都是优选解决方案。根据我们的计算,无框双玻组件的生产成本已经低于标准有框玻璃背板组件。
系统
每块组件的电压提高了一倍以上;每片电池的开路电压从700 mV左右提高到1800 mV左右。如果将60片电池串联形成组件,总开路电压将达到108 V。因此,电池串长度必须大幅缩减,使电压处于1000 V或1500 V以下。若要解决这一问题,可以将多个子串并联(例如类似基于半片电池的组件设计),或采用组件级直流优化器或微型逆变器。
成本
技术可行性解决之后,下一个问题自然是双结叠层电池技术在经济上可行吗?图9所示为当前市场价下无框双玻组件的生产成本。比较双面PERC单结电池与上述双结叠层电池的生产成本,可以发现双结叠层电池的效率需高出约4-5%(绝对值),其组件生产成本才会与双面PERC单结电池持平。如图6所示,这要求顶电池的效率达到20%左右。
图9:单结电池和双结叠层电池的组件生产成本与电池效率的关系
由于光伏平衡系统(BOS)带来的额外成本,从系统层面来看,每瓦组件价格会随着组件效率的提高而上涨。图10显示了当组件效率提升时,为保持光伏系统成本不变,组件价格的上涨空间。根据不同的BOS成本,组件效率每提高1%(绝对值),组件价格可提高约0.01欧元/瓦。
因此,双结叠层电池所需要的效率增益可以更低:只需要2-3%(绝对值)即可,不用达到5%(绝对值)。这样,组件生产成本只增加不到0.02欧元/瓦,而且可以转嫁到组件价格上。
图10:在保持光伏系统成本不变的前提下,组件价格的允许上涨空间与组件效率的关系。
结论
钙钛矿太阳能电池如今已成为双结叠层电池的可行解决方案,可搭配晶硅底电池,并且在全球各地的多家实验室内都取得了良好的试验成果。未来几年内,有望开发出转换效率比单结晶硅电池高出2-3%(绝对值)的双结叠层电池。钙钛矿双结叠层电池在经济性方面也颇具吸引力。目前最大的挑战依然是钙钛矿电池缺乏长期稳定性。
主流晶硅电池与组件技术的发展也令钙钛矿双结叠层电池受益匪浅,如多主栅连接和双玻双面组件。要将钙钛矿顶电池直接叠加在PERC底电池上似乎颇具挑战性,不过可以选择异质结电池或TopCon电池作为底电池,从而进一步推动未来电池技术的发展。
凭借贺利氏的低温银浆、PEDOT:PSS和导电胶,贺利氏将为客户开发钙钛矿双结叠层电池技术提供一臂之力。
钙钛矿电池目前还存在许多问题,因此距离实现量产还有很长的一段路。不过,此类电池是目前唯一有望突破肖克利-奎伊瑟(Shockley-Queisser)极限、光电转换效率达到30%以上的可行解决方案。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
4月10日,TrendForce集邦发布最新光伏产业链价格信息。硅料环节本周硅料价格:N型复投料主流成交价格为41元/KG,N型致密料的主流成交价格为40元/KG;N型颗粒硅主流成交价格为38元/KG。交易情况拉晶端对采购依旧保持谨慎态度,下游预判料企丰水期加码提产,结合531后的真实需求走向,看空情绪较浓,延续
4月10日,InfoLink发布最新光伏产业链价格信息,详情见下:硅料价格本周硅料价格因签单较少暂时持稳,须注意厂家近期报价已开始下滑。硅片厂家直接采购国产块料现货执行价格,约落在每公斤38-43元范围,主流厂家交付价格落在40-42元人民币、二三线厂家则约落在39-40元人民币。国产颗粒硅当期交付以主流
美国白宫4月9日表示,由于中国未撤回关税反制措施,从美国东部时间9日起,将对来自中国的商品加征50%的关税,使得中国商品的总关税税率达到104%,这是中美贸易战爆发以来最严厉的一次制裁。而这对于光伏行业而言,已屡见不鲜。当中国光伏产品凭借强大的竞争力横扫70%市场份额时,海外市场出于竞争压力
根据TrendForce集邦咨询新能源研究中心4月9日最新报价,N型复投料主流成交价格为41元/KG;N型致密料主流成交价格为40元/KG;N型颗粒硅报价为38元/KG,企稳不变。本周N型182单晶硅片最新人民币价格下跌至1.25元/片,跌幅为1.57%;N型210单晶硅片人民币价格为1.55元/片;N型210R单晶硅片最新报价为1.5元/
根据TrendForce集邦咨询新能源研究中心4月2日最新报价,N型复投料人民币价格为RMB41/KG,N型致密料人民币价格为RMB40/KG。N型颗粒硅人民币价格为RMB38/KG。非中国区多晶硅料美金价格保持在US$19KG。M10单晶硅片人民币报价保持在RMB1.1/Pc;美金报价为US$0.139/Pc。G12成交价格为RMB1.65/pc;美金报价为
4月7日,集邦咨询发布(2025年3月26日~4月2日)最新一周光伏产业链价格,详情见下:根据TrendForce集邦咨询新能源研究中心4月2日最新报价,N型复投料人民币价格为RMB41/KG,N型致密料人民币价格为RMB40/KG。N型颗粒硅人民币价格为RMB38/KG。非中国区多晶硅料美金价格保持在US$19KG。M10单晶硅片人民币
日前,印度光伏制造商WaareeEnergies在古吉拉特邦Chikhli的5.4GW太阳能电池超级工厂正式投产,这一项目成为印度迄今为止规模最大的光伏电池生产基地。据悉,Waaree分两阶段投产了位于Chikli的工厂,涵盖PERC和TOPCon技术。该公司今年1月已投产1.4GW单晶PERC产能,2月,其首席执行官AmitPaithankar表示
4月3日,集邦新能源发布最新光伏产业链价格。硅料本周N型复投料主流成交价格为41元/KG,N型致密料的主流成交价格为40元/KG;N型颗粒硅主流成交价格为38元/KG。交易状况:硅料成交量偏低,下游观望情绪延续,但考量到下游需求仍有支撑,故交易量暂有保障。供给动态:预计4月多晶硅产量约10.3万吨,整体
本周N型硅片价格上涨,其中N型G10L单晶硅片(182*183.75mm/130μm/256mm)成交均价在1.28元/片,周环比涨幅6.67%;N型G12R单晶硅片(182*210mm/130μm)成交均价在1.54元/片,周环比涨幅6.21%;N型G12单晶硅片(210*210mm/150μm)成交均价在1.59元/片,周环比涨幅2.58%。本周市场成交较为活跃,硅片价格上涨
4月3日,InfoLink发布最新光伏产业链价格。硅料价格本周硅料价格持稳,暂时无变动。硅片厂家直接采购国产块料现货执行价格,约落在每公斤38-43元范围,主流厂家交付价格落在40-42元人民币、二三线厂家则约落在39-40元人民币。国产颗粒硅当期交付以主流厂家供货为主,价位落在每公斤37-39元人民币,报价
4月2日,集邦新能源发布光伏产业链价格情况。根据TrendForce集邦咨询新能源研究中心4月2日最新报价,N型复投料主流成交价格为41元/KG;N型致密料主流成交价格为40元/KG;N型颗粒硅报价为38元/KG,企稳不变。本周M10硅片主流成交价格依旧为1.1元/片;G12价格维稳在1.65元/片。N型182单晶硅片最新人民币
4月10日,伏图拉(银川)科技有限公司太阳能一体化基地及大型电站项目在我市临港产业园区正式开工。据介绍,伏图拉(银川)科技有限公司太阳能一体化基地及大型电站项目计划总投资65亿元,分两期进行建设。一期项目计划投资20亿元,建设5GW太阳能组件工厂及500MW钙钛矿中试车间;二期项目投资45亿元,建设8
4月10日,天合光能发布公告称,公司近日与全球钙钛矿/晶硅太阳电池技术领军企业OxfordPhotovoltaicsLtd.(以下简称“牛津光伏”)正式达成独家专利许可协议,通过此次合作,公司获得了在中国内地研发、制造、销售、许诺销售、使用、分销基于牛津光伏钙钛矿电池技术和钙钛矿/钙钛矿叠层技术及钙钛矿/晶
从“双碳”目标的号角吹响,到光伏行业寒冬下的市场洗牌,格力、TCL、创维、美的、海尔、康佳等历经家电行业数轮迭代的“卷王”,在光伏行业周期中跨界突围。红海突围家电军团入场2018#x2014;2023年,当家电行业从千元空调打到百元电饭煲,从线下渠道肉搏到直播带货的贴身较量,巨头们把家电行业卷成一
3月18日,杭州柯林发布公告称,本次向特定对象发行股票拟募集资金总额不超过146,000.00万元(含本数),并以中国证监会关于本次发行的注册批复文件为准。本次发行的募集资金在扣除发行费用后,将用于以下项目:1GW高效钙钛矿太阳能电池组件项目概况根据公告,2024年11月,杭州柯林控股子公司杭州柯能10
3月12日,佛山市2024年国民经济和社会发展计划执行情况与2025年计划草案的报告。2024年,佛山建成23项电力主网工程,投产1683项电网项目,供电可靠性连续14年排名全国前十。2025年,佛山将加强电网规划建设,推动500千伏楚庭第二通道线路工程、220千伏乐顺输变电工程等一批重点项目开工建设,持续提升
日前,总部位于加州的光伏技术公司TandemPV获得了5000万美元的A轮融资和债务,公司表示,这将使其能够在美国建造一个商业规模的制造工厂。该轮融资由美国风险投资公司Eclipse领投,ConstellationEnergy、PlanetaryTechnologies、UncorrelatedVentures、TrellisClimate、TomWerner(SunPower前首席执行
2月27日,赣州市工业和信息化局发布关于向社会公开征求《赣州市未来产业发展实施意见(征求意见稿)》意见的公告,公告显示,以赣州经开区、南康区、赣县区、定南县为重点,抢抓能源革命机遇,重点布局太阳能、氢能等领域。太阳能加强钙钛矿太阳能电池、光伏建筑一体化等新型太阳能技术、材料和装备研
2月27日,中国光伏行业协会正式发布《中国光伏产业发展路线图(2024-2025年)》(以下简称“《路线图(2024-2025年)》”)。《路线图(2024-2025年)》包含一年一度更新的各产业链环节最新技术进展情况,以及对于到2030年的技术发展趋势预测。这已是协会连续九年组织专家编制《中国光伏产业发展路线图
日前,有投资者向京山轻机提问,钙钛矿不仅可用于太阳能电池,也可用于LED和显示技术、量子技术等等。贵司的设备生产的钙钛矿是否可用于除太阳能电池以外的其它领域?或者是否具有提供相应设备的能力?2月21日,京山轻机表示,当前公司的发展战略聚焦于光伏装备和包装装备这两大核心业务。公司能提供钙
北极星氢能网获悉,近日,北京市经济和信息化局开始征集《北京市绿色能源新技术新产品首应用目录(第一批)》,本次目录产品征集主要面向电解水制氢装备、液氢装备、固态储供氢装备、氢气压缩机、高温燃料电池、氢燃机等领域。原文如下:北京市经济和信息化局关于征集《北京市绿色能源新技术新产品首应
日本将根据内阁批准的第7个战略能源计划,到2040财年在电力结构中实现40%至50%的可再生能源份额,这将比2023年达到的22.9%有所增加,使可再生能源成为其能源系统的中心。根据日本经济产业省(METI)的计划,太阳能是可再生能源中的重点技术。考虑到日本缺乏合适的太阳能地点,政府的目标是在下一代太阳
4月10日,第十三届储能国际峰会暨展览会(ESIE2025)于北京新国展二期盛大启幕,东方日升以场景化能源生态构建者姿态,携工商业光储、大型地面光储及光储充一体化三大解决方案矩阵亮相展会,依托技术创新与场景适配能力,为能源转型注入澎湃动能。在工商业光储板块,iCon125kW/261kWh工商业液冷储能一
北极星氢能网获悉,近日,江苏大学能源与动力工程学院发布有关于太阳能制氢/储氢一体化系统的科研成果。该项目在太阳能制氢储氢一体化系统取得了显著成果,技术特点鲜明,拥有高效的光电转换效率和催化活性,实现了制氢与储氢的无缝对接。在主要技术参数方面,系统具有稳定的光电转化效率,催化剂表现
继去年10月纤纳自主研发的钙钛矿小组件实现23.65%的效率突破之后,纤纳小组件再拓效率边界。近日,经国家光伏产业计量测试中心的权威认证,纤纳光电自主研发的19.48cm²钙钛矿小组件光电转换效率达24.12%(正扫23.62%,反扫24.12%),全面积稳态效率提升至23.93%,在恒久的自我革新中实现了效率的快速
3月11日,在欧洲西北部最大的太阳能贸易展——2025荷兰太阳能光伏展上,爱旭宣布正式启动第三代黑洞系列“满屏”组件的全球量产交付。继2024年Intersolar展首次亮相后,“满屏”组件将面向全球户用及工商业市场正式量产上市。爱旭始终以极限光电转换效率为创新原点,致力于通过革新性技术持续为客户创
2025年的春天,一场盛会如约而至,3月初,全国两会正式拉开帷幕。2025年不仅是“十四五”的收官之年,同时也是“十五五”规划开启新篇的重要节点,五年来,我国在经济发展、科技创新、社会民生等诸多领域都取得了举世瞩目的成就,生态环境持续改善,绿色发展理念深入人心,光伏作为新质生产力的典型代
3月5日-7日,意大利国际可再生能源展(KEYTheEnergyTransitionExpo)在意大利里米尼举办。作为全球N型光伏技术的引领者,一道新能本次携DAON4.0系列组件、全黑组件以及Diamond系列BC组件等前沿产品阵容亮相,向全球客户展示了公司在光伏技术创新领域的最新突破与成就。欧洲作为全球光伏发电需求最为旺
2025年3月4日,在TV莱茵中国区总部,国际独立第三方检测、检验和认证机构德国莱茵TV为协鑫集成颁发BC高效单、双玻组件IEC61215和IEC61730认证证书。这标志着协鑫集成的GPC高效组件在光电转换效率、长期可靠性以及安全性能方面符合严苛的国际标准要求,可为全球客户提供更加可靠、高效的光伏解决方案。T
2月24日,湛江钢铁原料场光伏发电项目P型单晶硅轻质组件≥420Wp中标结果公布,中标企业湖南红太阳新能源科技有限公司,中标价格31757496元。招标公告显示,采购P型单晶硅轻质组件,功率≥420Wp。技术规格:(1)晶体硅组件分别按照GB/T9535(或IEC61215)以及GB/T20047(或IEC61730)标准要求,通过国
2月14日,隆基绿能科技股份有限公司(以下简称“隆基”)迎来了其成立的第25个年头。在这个重要的里程碑时刻,隆基创始人、总裁李振国发表了一场主题为“生生不息”的演讲,回顾了隆基的发展历程,展望了隆基未来的绿色能源发展蓝图,并向所有支持隆基成长的人们表达了最诚挚的感谢。从行业本质出发,
近日,湖南省娄底市的工商业屋顶分布式光伏项目正式投入运营,隆基绿能基于HPBC2.0技术的Hi-MO9组件凭借目前行业最高的量产光电转换效率,助力该项目实现5%的装机量提升,成为当地的“捕光能手”。该项目位于湖南省娄底市娄星产业开发区,总装机容量为4.3MW,其中1.5MW采用隆基绿能BC二代技术Hi-MO9组
1月,采用华能清能院自主研发的轻质光伏组件煤棚分布式光伏项目在华能浙江玉环电厂实现全容量并网。该项目利用煤棚穹顶约69700平方米有效面积,建设总容量为10兆瓦的太阳能光伏电站,采用胶粘式轻质晶硅光伏组件方式安装,其中清能院供货5.2兆瓦。该项目预计年发电量可达1000万千瓦时,将全部接入厂用
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!