登录注册
请使用微信扫一扫
关注公众号完成登录
但是,如果想要获得宽带抗反射涂层,则必须添加额外的层[ 1 ]。对于双层抗反射涂层,根据Rids [ 4 ] 的报告,可以使用等式(3)和(4)优化设计。折射率如下堆叠:n Si > n 1 st > n 2 nd > n air,其中n 1 st和n 2 nd表示抗反射涂层的第一层和第二层的折射率。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.27(n 1 st),1.51(n 2 nd),61 nm(d 1 st)和91 nm(d 2 nd)。考虑到实际材料,将Al 2 O 3与TiO 2 [ 5 ]结合,并将MgF 2与ZnS [ 6 ]结合以构成双层抗反射涂层。
根据Bouhafs等人的报告。[ 7 ],硅上三层抗反射涂层的设计可以用公式(5) - (7)优化,其中n 1 st,n 2 nd和n 3 rd是第一层,第二层的折射率层和第三层。折射率以n Si > n 1 st > n 2 nd > n 3 rd > n 空气的顺序降低。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.52(n 1 st),1.85(n 2 nd),1.36(n 3 rd),55 nm(d 1 st),74 nm(d 2 nd)和101nm(d 3 rd)。三层抗反射涂层,例如SiO 2 / SiO 2 -TiO 2 / TiO 2 [ 1 ]和SiO x / SiO x N y / SiN x [ 8采用降低硅太阳能电池的反射率和提高效率。
显然,三层抗反射涂层在这三种结构中显示出最低的反射率[ 1 ]。因此,光伏产业非常愿意采用三层结构以获得更好的光伏性能。尽管作为三层抗反射涂层的第一层具有适当的折射率(n = 2.26),但由于其表面钝化能力差,TiO 2似乎不是最佳选择,这对开路电压是不利的。太阳能电池[ 1 ]。对于SiN x,一方面,采用PECVD(等离子体增强化学气相沉积)方法,在沉积过程中,其折射率可以从1.98调整到2.98 [ 9]]。另一方面,由于固定正电荷密度高,氢含量高,SiN x具有优异的表面钝化能力,有利于提高开路电压[ 8 ]。因此,在光伏工业中,考虑到抗反射效果,表面钝化和工艺的简单性,抗反射涂层通常由通过PECVD沉积的具有不同折射率的三个SiN x层构成。
尽管随着折射率的增加可以改善SiN x的表面钝化效果,但寄生吸收变得更加严重。因此,为了平衡,第一SiN x层的折射率通常约为2.37(n 1 st)。相应地,根据等式(5),将另外两个SiN x层的最佳折射率确定为1.85(n 2 nd)和1.44(n 3 rd)。当设计波长为550 nm(λ 空气)时,每个SiN x层的最佳厚度确定为58 nm(d 1)根据等式(7), st),74nm( d 2 nd)和95nm( d 3 rd)。
然而,可以发现第二层和第三层的折射率不能通过SiN x [ 9 ]实现。因此,Kuo等人。采用SiO x N y(n = 1.8)作为第二层,SiO x(n = 1.46)作为第三层[ 8 ],两者都可以用PECVD方法容易地集成到SiN x沉积工艺中。在晶体硅太阳能电池的实际生产中,在PECVD管式炉中同时沉积240个带有抗反射涂层的部件,这意味着控制每个部件之间的一致性是特别重要的。当SiO x N.在沉积y时,需要同时将三种气体(SiH 4,NH 3和N 2 O)注入管式炉中,这对于控制稠度是一个很大的挑战。Kuo等人。使用计算出的最佳厚度(59.78,76.39和94.18 nm)作为每层的实际厚度,从而产生令人印象深刻的抗反射效果[ 8]。然而,整个厚度高达230nm,这显着增加了抗反射涂层的成本。此外,由于采用了烧穿银触点金属化,涂层厚度高达230 nm肯定会影响银和硅之间的接触。因此,为了平衡成本,电极接触和抗反射效果,抗反射涂层的整个厚度在批量生产中通常为约80n。
因此,在本报告中,为了寻求在大规模生产中具有较低反射率的更可行的抗反射涂层结构,采用SiOx代替传统的三层SiNx抗反射涂层的第三层,保留另外两层。这种新型抗反射涂层用于提高单晶硅PERC(钝化发射极和后部电池)太阳能电池的效率,预计在未来几年内将主导光伏市场。
2。材料和方法
采用硼掺杂的单晶硅晶片,其长度为156.75mm,厚度为180μm,电阻率为约0.8Ω·cm。工业化单晶硅PERC太阳能电池的制造工艺流程如图1所示。
图1. 工业化单晶硅太阳能电池的制造工艺流程。
首先用基于碱的蚀刻溶液对切割后的单晶硅晶片进行纹理化。然后,将样品转移到管式炉中以完成磷扩散和发射体形成。随后,用湿法蚀刻技术完成磷硅酸盐玻璃(PSG)的去除,边缘隔离和后表面抛光。之后,依次通过ALD(原子层沉积)和PECVD沉积氧化铝和氮化硅,以在后表面上形成钝化叠层(Al2O3/ SiNx)。之后,仍然使用PECVD在前表面上沉积抗反射涂层。在Al2O3/ SiNx之后通过激光烧蚀局部打开堆叠,将电极浆料(背面银,背面铝和正面银)丝网印刷并干燥。最后,将样品在网带炉中烧结以完成金属化并完成太阳能电池制造过程。
在沉积抗反射涂层期间,改变气体源以调节层组成。对于SiNx,采用硅烷(SiH4)和氨(NH3)作为气源。并且对于SiOx,氨被笑气(N2O)代替。详细地说,两个具有不同折射率(n = 2.37和n = 2.09)的SiNx层和一个SiOx层(n= 1.46)组合形成三层抗反射涂层。如上所述,对稠度的控制特别重要,因为在管式炉中同时制造240个样品。调节和优化气流(SiH4和N2O),压力,射频功率和不同区域的温度以改善一致性。在优化之后获得以下所示的结果。为了比较,还采用传统的SiNx三层抗反射涂层来制造太阳能电池,即采用折射率为1.99的SiNx层作为第三层。
在完成太阳能电池的整个制造工艺流程之后,通过电流注入进行载流子诱导的缺陷的钝化,以抑制PERC太阳能电池的严重的光诱导的劣化。
在实验之前,进行理论分析以探索SiO x层的最佳厚度。对于纹理化的晶片,光线倾斜地穿过抗反射涂层,这将增加光学路径长度。此外,最初从表面反射的光的比例可以第二次到达表面并且还有另一个进入晶圆的机会[ 10 ]。因此,鉴于与平面晶圆的这些差异,采用了来自PV Lighthouse的SunSolve仿真软件,而不是上述方程式,以进一步提高理论分析的准确性。将蒙特卡罗射线追踪与薄膜光学相结合,SunSolve可以确定所选光谱下太阳能电池或太阳能模块的光学损耗[11 ]。
如图2所示,模拟结构由三层抗反射涂层,高度为2μm的随机直立金字塔纹理,厚度为170μm的单晶硅晶片,平面后表面,Al 2 O组成。3 / SiN x钝化叠层,以及从上到下的铝电极。排除前母线和指状物以聚焦在抗反射涂层上。
图2. SunSolve中单晶硅PERC太阳能电池的模拟结构。排除前母线和指状物以聚焦在抗反射涂层上。
三层抗反射涂层的模拟参数列于表1中。第一SiN x层和第二SiN x层的参数分别固定为20nm(n = 2.37)和45nm(n = 2.09)。调整第三层的参数,包括材料,折射率和厚度。
表 1.SunSolve中单晶硅PERC太阳能电池的三层抗反射涂层的模拟参数。
3.结果
3.1。仿真结果
在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线如图3所示。可以发现,低于约550nm,具有SiOx作为第三层的样品具有比具有SiNx作为第三层的样品低得多的反射率。随着SiOx第三层厚度的增加,低于约400nm的反射率降低。相反,在400nm和550nm之间,反射率增加。有趣的是,在高于约600nm的情况下,随着厚度增加,反射率也降低。当SiOx厚度落在30nm和40nm之间时,SiO的反射率x第三层样品在约600nm以上接近SiNx第三层样品。
图3. 在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线。列出了相应的加权平均反射率(WAR)。
根据Bouhafs等人的报告。[ 7 ],加权平均反射率(WAR)使用以下等式(8)计算,因为太阳能电池性能也受光子通量和内部量子效率的影响。˚F 我(λ) ,Q 我(λ) ,和R(λ)表示的光子通量,内部量子效率和反射率,分别在波长λ 我(λ 1(300纳米)≤ λ 我 ≤ λ 2(1100nm))。内部量子效率数据来自单晶硅PERC太阳能电池。每种抗反射涂层的相应WAR值列于图3中。
可以发现,随着SiO x第三层厚度的增加,WAR从3.13%(10nm SiO x)降低到2.46%(50nm SiO x)。显然,用10nm SiO x作为第三层的15nm SiN x的替代物不能改善反射率,这意味着SiO x厚度应该至少为20nm。另一方面,考虑到所施加的烧穿银接触金属化,三层抗反射涂层的厚度增加受到限制,以保证银和硅之间的有效接触。因此,三个SiO x 在以下实验中,在20nm,30nm和40nm下使用厚度。
3.2。太阳能电池
根据模拟结果,采用具有三种不同厚度的SiO x第三层来构建抗反射涂层,即20nm,30nm和40nm,得到三组单晶硅PERC太阳能电池。具有15nm SiN x第三层的组用作对照。每组包含约100个样品,并且光伏参数在箱形图中显示(图4)。可以发现,由于存在少数异常值,一些平均值显着低于中值。因此,提取中值并列于表2,这可以更好地反映实际情况。此外,与15 nm SiN x相比,效率提高图 4d中的组也用中值计算。结果表明,用SiO x作为第三层代替SiN x可以有效地改善短路电流(I sc)。当20nm SiO x第三层可以产生40mA的电流增益时,通过将SiO x厚度增加到30nm或40nm,可以实现高于20mA的另一增益。该电流改善与模拟结果一致,表明反射率在短波长下降。除了电流,其他两个光伏参数,即开路电压(V oc)和填充因子(FF),具有很小的变化,这意味着用SiO x作为第三层替代SiN x在前表面钝化和前栅极金属化方面没有差别。结果,由于短路电流的改善,光电转换效率(Eff)得到改善。由于非常相似的电流,30nm和40nm的SiO x基团具有非常相似的效率,其比SiN x基团高约0.15%(绝对值)。另外,从在示出的箱形图图4,可以发现,这种更换的SiN X与的SiO X由于第三层在一定程度上对电流分布产生负面影响,导致效率分布略有扩大。如上所述,所采用的PECVD装置设计用于工业生产,并且在管式炉中同时制造240个样品。虽然我们调整和优化了沉积条件以提高一致性,例如气流(SiH 4和N 2 O),压力,射频功率和不同区域的温度,但仍需要对条件进行微调以进一步调整减少分布宽度和异常值的数量。
图4. 光电参数的箱形图(一个 -open电路电压,b -short电路电流,Ç -fill因子,和d -efficiency)与抗反射涂层的不同层第三制造的单晶硅PERC太阳能电池。每组包含约100个太阳能电池。异常值和平均值由实心菱形和空心方块表示。d中的实心黑球表示与15nm SiN x组相比的中值效率增益。
表2. 用不同的第三层抗反射涂层制造的单晶硅PERC太阳能电池的光伏参数。每组包含约100个太阳能电池,并列出中值。
为了研究电流改善的起源,测量了反射率和外量子效率(EQE)。应当注意,因为采用工业生产设备来沉积抗反射涂层,所以SiO x是第三层的厚度之间的组差异可能被正常波动所掩盖。因此,仅选择一组SiO x第三层与SiN x基团进行比较。考虑到效率增益和经济性,30 nm SiO x第三层是最佳选择,因为与40 nm SiO x相比,它具有非常相似的效率增益并且消耗更少的原材料。一个30nm SiO的反射率曲线X样本和一个15纳米的SiN X的金属化前的样品示于图5 A,和金属化后的EQE曲线展出图5湾 由于相应测试仪器的限制,图5中的两个波长范围之间存在轻微差异,即反射率为350-1050nm,EQE为300-1100nm。平滑反射曲线以使结果更容易观察。可以发现,与15nm SiN x样品相比,30nm SiO x样品具有低于约550nm的显着较低的反射率和高于约600nm的几乎相同的反射率,这与模拟结果一致。在金属化之后,30nm SiO x样品具有低于约550nm的显着更高的EQE和高于约600nm的几乎相同的EQE,这与反射率结果一致。由于EQE改善,30nm SiO x样品表现出更高的短路电流,这证实了上述光伏参数。
图5. (a)金属化前30nm SiO x第三层样品和15nm SiN x第三层样品的反射曲线。(b)金属化后30nm SiO x第三层样品和15nm SiN x第三层样品的外量子效率曲线。
3.3。太阳能组件
为了检查基于SiOx的单晶硅PERC太阳能电池作为第三层抗反射涂层是否具有可靠性问题,需要制造太阳能模块。如上所述,30nm的厚度被认为是SiOx作为第三层抗反射涂层的最佳选择。因此,制造另外1200个具有30nm SiOx的单晶硅PERC太阳能电池,并且根据效率对整个1300个太阳能电池进行分类。因此,480个太阳能电池的效率水平为21.5%(21.5%≤Eff挑选出<21.6%)来制造八个太阳能模块。两个太阳能模块用于检查光诱导降解(LID),另外两个用于检查电位诱导降解(PID)。标准测试条件下获得通过,即,LID:1000瓦/米2,60℃,和60小时; PID:85°C,85%RH(相对湿度),-1000 V,PID为192 h。具有15nm SiNx的太阳能模块用作对照。具有不同的第三层抗反射涂层的单晶硅PERC太阳能模块的平均电池 - 模块(CTM)比率,LID速率和PID速率,即30nm SiOx和15nm SiNx,列于表3中。很明显,太阳能电池组件具有30纳米的SiOx具有比具有15nm SiNx的CTM比略低的CTM比率,这可归因于低于约550nm的光谱响应优势。已知太阳能模块的EVA(乙烯 - 乙酸乙烯酯共聚物)封装材料将吸收短波长的光,导致部分掩盖相应的光谱响应优势。根据CTM比率,可以推断的是,替换为15nm的SiNX与30纳米的SiOX可能带来约0.9 W的用于太阳能电池组件的平均输出功率增益。30nm SiOx太阳能模块的LID和PID速率接近15nm SiNx的LID和PID速率。此外,从LID测试前后的电致发光图像(图6b)或PID测试(图6c,d),太阳能模块中没有存在严重劣化的太阳能电池,这证实了具有30nm SiOx的太阳能电池作为第三层抗反射涂层的一致性。因此,这种新型抗反射涂层不会对太阳能组件的可靠性产生负面影响。
4.进一步讨论
在上面的结果中,缺乏内部量子效率数据,这对于评估抗反射涂层的寄生吸收是必不可少的。因此,为了解决这个问题,最近制造了具有不同第三层(即15nm SiN x和30nm SiO x)的抗反射涂层的新太阳能电池样品。每组包含约400个太阳能电池,平均光伏参数列于图7中。应该注意的是,因为已经应用了其他几种优化方法,例如晶片电阻率降低,磷掺杂分布调整以及利用热生长SiO 2改善表面钝化薄层(~2 nm),光伏性能取得了良好进展。在此基础上,当开路电压和填充因子几乎保持不变时,第三层抗反射涂层的改变导致56mA的短路电流增益和0.13%(绝对值)的效率增益。测量了两种太阳能电池的反射率,外量子效率和内量子效率,如图7所示。可以发现,改变后短波长的反射率和EQE得到改善,这与之前的结果一致。相反,IQE的下降低于约400纳米。一方面,改变的抗反射涂层是第三层,它不与硅衬底直接接触。另一方面,开路电压根据先前和当前结果几乎没有变化。因此,据信表面钝化不受第三层抗反射涂层改变的影响。相应地,IQE下降到约400nm以下可归因于寄生吸收的增加,这可能是由SiO x引起的。
事实上,除了本报告中的空气优化外,太阳能电池的抗反射涂层可以直接针对玻璃/ EVA封装进行优化,预计这对于改善太阳能模块的输出功率更有利。然而,这种策略有些不可行,因为太阳能电池的几乎所有表征方法都是在空气中进行的,例如IV(电流 - 电压),QE(量子效率)和反射率。然而,可以根据理论计算和实验结果讨论这两种策略之间的差异。如上所述,第一SiNx抗反射涂层的折射率通常约为2.37。根据等式(5)(nair用nEVA代替,其他两个SiNx层的最佳折射率确定为玻璃/ EVA封装的2.26(n2nd)和2.15(n3rd)(nglass=nEVA= 1.50)。相反,空气的值为1.85(n2nd)和1.44(n3rd),远低于封装的值。从另一个角度来看,可以根据实验结果估计由不同光学环境引起的增益/损失。当SiNx时第三层抗反射涂层被SiOx代替,太阳能电池和太阳能模块的相对性能改进分别为0.70%(绝对0.15%)和0.30%(绝对0.9W)。可以推断,当在模块中实施SiOx时,太阳能电池中的性能增益降低了57%。
5.前景
在本报告中,采用三层结构来构建单晶硅PERC太阳能电池的抗反射涂层。然而,仅调整和优化第三层抗反射涂层,另外两层是固定的。这种结构改进使太阳能电池的效率增益为0.15%。可以预期,如果其他两层也参与抗反射涂层的优化,则太阳能电池的反射率和转换效率将进一步提高。
另一方面,除了太阳能电池的进一步改进之外,还应该注意太阳能电池组件。EVA封装材料在短波长下的吸收导致部分掩盖具有SiOx作为第三层的太阳能电池的光谱响应优势,这导致太阳能模块的输出功率增益仅为0.9W。因此,通过增强短波长的封装材料透射率,可以增加CTM比,并且期望实现更高的输出功率增益。
目前,抗反射涂层的进一步优化正在进行中,并且已经实现了太阳能电池的平均效率增益为0.2%。结合晶圆电阻率降低,磷掺杂分布调整和表面钝化改善,单晶硅PERC太阳能电池的平均效率增长到21.93%。应该注意的是,如果应用选择性发射极技术,预计太阳能电池效率将达到22.1%。对于太阳能模块,需要与供应商建立合作,以减少短波长封装材料的吸收,而不会降低太阳能模块的可靠性。
6。结论
在光伏工业中,通常采用由具有不同折射率的三个SiNx层组成的抗反射涂层,以降低反射率并提高单晶硅PERC太阳能电池的效率。然而,由于SiNx的物理限制,不能实现低至约1.40的折射率,这是第三层三层抗反射涂层的最佳值。因此,在本报告中,第三层被SiOx取代,它具有更合适的折射率1.46,并且可以很容易地集成到SiNx中采用PECVD方法沉积工艺。通过使用SunSolve的模拟和分析,选择三种不同的厚度,即20nm,30nm和40nm,以构建SiOx第三层。与15nm SiNx相比,SiOx第三层可以增加太阳能电池的短路电流,从而提高转换效率。尽管太阳能电池效率随着SiOx第三层厚度的增加而增加,但是30nm厚度是最佳选择,因为与40nm厚度相比,它具有非常相似的效率增益并且消耗更少的原材料。替换为15nm的SiNX与30纳米的SiOX因为第三层抗反射涂层可以带来0.15%的效率增益。根据反射率和EQE测量,该效率改进源于低于约550nm波长的反射率降低和光谱响应增强。然而,相反,IQE下降到约400nm以下,这可归因于SiOx引起的寄生吸收增加。至于太阳能电池组件,由于EVA封装材料吸收短波长的光,太阳能电池的光谱响应优势为30 nm SiOx部分被遮盖,导致太阳能电池组件的CTM比率略低,输出功率增益仅为0.9 W. LID和PID测试结果表明,这种新型三层抗反射涂层不会对太阳能组件的可靠性产生负面影响,可以大规模生产。
作者:张树德1,2 OrcID,岳瑶2,党党虎2,Weifei Lian 2,3,洪强强2,Jiansheng Jie 1,*,Qingzhu Wei 2,4,*,知春倪2,3,肖晓红1和灵芝谢5
1苏州大学功能纳米与软材料研究所(FUNSOM)江苏省碳基功能材料与器件重点实验室,苏州215123
2苏州泰乐森太阳能科技有限公司,江苏常熟215542
3南京航空航天大学,南京210016
4常熟理工学院,江苏常熟215500
5四川大学新能源与低碳技术研究所,成都610065
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2024年以来,全球光伏行业经历“冰火两重天”:一面是能源转型需求持续增长,另一面是阶段性产能过剩引发的价格快速下滑。作为硅料、电池片双料全球龙头,通威股份(600438.SH)保持了一贯的稳健经营步调,通过加强技术研发与生产降本增效,进一步巩固提升主要业务环节领先的技术、成本、品质、品牌等
根据TrendForce集邦咨询新能源研究中心4月23日最新报价,N型复投料人民币价格为RMB40/KG,跌幅为2.44%;N型致密料人民币价格从RMB40/KG掉落至RMB38/KG,变动幅度为-5%。N型颗粒硅人民币价格下滑至RMB37/KG。非中国区多晶硅料美金价格有所变动,最新价格为US$18.5KG。N型183单晶硅片人民币最新价格掉落
4月24日,TrendForce集邦发布最新光伏产业链价格。硅料环节本周硅料价格:N型复投料主流成交价格为40元/KG,N型致密料的主流成交价格为38元/KG;N型颗粒硅主流成交价格为37元/KG。交易状况周内,多晶硅市场看跌情绪浓厚,下游拉晶厂对硅料报价接受程度有限,买涨不买跌逻辑,叠加后市需求减速,多晶硅
4月24日,InfoLinkConsulting公布最新光伏供应链价格情况。价格说明InfoLink公示价格时间区间主要为前周周四至本周周三正在执行和新签订的合约价格范围。现货价格主要参考超过100家厂商之资讯。主要取市场上最常成交的「众数」资料作为公示价格(并非加权平均值)、根据市场实际情况酌情调整。多晶硅美
根据TrendForce集邦咨询新能源研究中心4月23日最新报价,N型复投料主流成交价格下跌至40元/KG;N型致密料主流成交价格为38元/KG,跌幅为5%;N型颗粒硅报价从38元/KG掉落至37元/KG。本周N型182单晶硅片最新人民币价格大幅下跌,最新价格为1.1元/片;N型210单晶硅片人民币价格从1.5元/片下滑至1.45元/片
4月21日,钧达股份发布公告称,截至本公告出具之日,香港联交所上市委员会已举行上市聆讯,审议了公司本次发行上市的申请。根据本次发行上市的安排,公司按照有关规定在香港联交所网站刊登本次发行上市聆讯后资料集,该聆讯后资料集为公司根据香港联交所、香港证券及期货事务监察委员会的要求而刊发,
根据TrendForce集邦咨询新能源研究中心4月16日最新报价,N型复投料人民币价格为RMB41/KG,N型致密料人民币价格为RMB40/KG。N型颗粒硅人民币价格为RMB38/KG。非中国区多晶硅料美金价格有所变动,最新价格为US$18.7KG。N型182单晶硅片人民币最新价格掉落至RMB1.23/pc,较之前减少了1.6%。N型210单晶硅片
在固有印象中,光伏产业可谓“分工明确”,敏锐且灵活的民营企业主攻上游光伏制造,而资金与实力雄厚的央国企则驰骋下游光伏电站开发运营。然而,在“双碳”战略实施以及残酷的光伏去产能淘汰赛下,曾经的分界线愈加模糊,国资早已或主动或被动控股多家光伏组件企业。最近市场熟知的莫过于一道新能,于
4月17日,集邦新能源发布最新光伏产业链价格。硅料本周N型复投料主流成交价格为41元/KG,N型致密料的主流成交价格为40元/KG;N型颗粒硅主流成交价格为38元/KG。交易状况:周内交易略显疲惫,签单零星,下游延续优先消化库存为主,少数厂商采购亦以低价混包料为主,但拉晶厂亦不急于趁势压价,成本支撑
4月16日,InfoLink发布光伏产业链最新价格。价格说明Infolink公示价格时间区间主要为前周周四至本周周三正在执行和新签订的合约价格范围。现货价格主要参考超过100家厂商之资讯。主要取市场上最常成交的「众数」资料作为公示价格(并非加权平均值)、根据市场实际情况酌情调整。多晶硅美元价格,主要反应
根据TrendForce集邦咨询新能源研究中心4月16日最新报价,N型复投料主流成交价格为41元/KG;N型致密料主流成交价格为40元/KG;N型颗粒硅报价为38元/KG,企稳不变。本周N型182单晶硅片最新人民币价格下跌至1.23元/片;N型210单晶硅片人民币价格从1.55元/片下滑至1.5元/片,跌幅为3.23%;N型210R单晶硅片
2024年以来,全球光伏行业经历“冰火两重天”:一面是能源转型需求持续增长,另一面是阶段性产能过剩引发的价格快速下滑。作为硅料、电池片双料全球龙头,通威股份(600438.SH)保持了一贯的稳健经营步调,通过加强技术研发与生产降本增效,进一步巩固提升主要业务环节领先的技术、成本、品质、品牌等
北极星太阳能光伏网获悉,4月28日,吉林省长春新区管理委员会发布长春日耀光电科技有限公司钙钛矿太阳能电池无尘车间建设项目拟审批公示。根据公示,项目位于长春北湖科技开发区长智光谷产业园西地块A1栋,投资1000万元,建筑面积2237平方米,主要从事钙钛矿太阳能电池模组的研发。详情如下:长春日耀
4月28日,国家能源局印发《关于促进能源领域民营经济发展若干举措的通知》,促进能源领域民营经济加快发展,引导民营经济在推进能源绿色低碳转型和建设新型能源体系中做大做优做强。在国家政策与技术创新双重驱动下,中国光伏行业正加速构建政策-技术-市场三维联动发展新格局,以突破性技术革新引领全
4月27日,中国电力企业联合会、德国莱茵TV集团、鉴衡认证中心、爱旭股份、隆基绿能联合于北京发布了《背接触(BC)电池技术发展白皮书》(以下简称《白皮书》)。作为全球首份面向光伏行业和社会公众的BC技术权威报告,《白皮书》系统阐释了BC技术的产业化路径、核心优势与可持续发展潜力,标志着这一“
4月27日,中国电力企业联合会、德国莱茵TÜV集团、鉴衡认证中心、爱旭股份、隆基绿能联合于北京发布了《背接触(BC)电池技术发展白皮书》(以下简称《白皮书》)。作为全球首份面向光伏行业和社会公众的BC技术权威报告,《白皮书》系统阐释了BC技术的产业化路径、核心优势与可持续发展潜力,标志着这一
4月16日,经美国国家可再生能源实验室(NREL)认证,隆基自主研发的晶硅-钙钛矿两端叠层电池转换效率达到34.85%,再次刷新晶硅-钙钛矿叠层电池转换效率世界纪录。消息一出,关于隆基“量产一代、研发一代、储备一代”的产品研发体系再次引发行业关注和讨论。1年零5个月,提升0.95%光电转换效率是光伏技
4月23日,ST聆达发布2025年第一季度报告,公司实现营业收入为285.72万元,同比下降89.94%;归母净利润为-2692.13万元,同比增长37.19%;扣非归母净利润为-2341.65万元,同比增长46.32%。公告提到,2025年2月27日至2025年2月28日安徽省铜陵市中级人民法院于在淘宝网司法拍卖网络平台上公开拍卖原控股股
近日,日本太阳能制造商TOYO宣布,其位于埃塞俄比亚的太阳能电池工厂于2025年4月初正式投产,年产能达2GW,这标志着该公司在非洲大陆的本地化制造布局正式开启。按计划,该工厂将在2025年4月底前向客户交付超80MW的太阳能电池产品,且在5-6月将月产能提升至150-200MW,实现全面达产。今年3月,TOYO便因
4月21日,钧达股份发布公告称,截至本公告出具之日,香港联交所上市委员会已举行上市聆讯,审议了公司本次发行上市的申请。根据本次发行上市的安排,公司按照有关规定在香港联交所网站刊登本次发行上市聆讯后资料集,该聆讯后资料集为公司根据香港联交所、香港证券及期货事务监察委员会的要求而刊发,
4月21日,全球知名知识产权综合信息服务提供商IPRdaily发布了《全球太阳能电池及组件发明专利排行榜(TOP50)》《全球钙钛矿太阳能电池发明专利排行榜(TOP30)》和《全球TOPCon太阳能电池发明专利排行榜(TOP30)》三大榜单。其中,在全球钙钛矿专利布局前三的企业中,天合光能作为唯一的中国企业,以
在固有印象中,光伏产业可谓“分工明确”,敏锐且灵活的民营企业主攻上游光伏制造,而资金与实力雄厚的央国企则驰骋下游光伏电站开发运营。然而,在“双碳”战略实施以及残酷的光伏去产能淘汰赛下,曾经的分界线愈加模糊,国资早已或主动或被动控股多家光伏组件企业。最近市场熟知的莫过于一道新能,于
“光伏的建材就是让建筑既体现它的功能性、美观性,同时这个建筑能够发电。我相信零碳建筑未来会成为全社会的一种潮流。”近日,隆基绿能董事长钟宝申参加央视财经频道“绿”动未来#x2014;#x2014;《对话》栏目录制时表示,全球深度脱碳的大背景下,零碳建筑将成为潮流并对全球深度脱碳意义重大。当天的
“借问酒家何处有,牧童遥指杏花村”。在古老的山西汾阳市杏花村镇,一座承载着深厚酿酒历史的古城正昂首阔步迈入绿色低碳的新时代。4月27日,由中核汇能(山西)能源有限公司投资,清源科技全资子公司清源易捷设计承建的中汾酒城50MW分布式光伏项目成功并网发电。该项目不仅是国内规模最大的白酒企业
4月27日,中国电力企业联合会、德国莱茵TÜV集团、鉴衡认证中心、爱旭股份、隆基绿能联合于北京发布了《背接触(BC)电池技术发展白皮书》(以下简称《白皮书》)。作为全球首份面向光伏行业和社会公众的BC技术权威报告,《白皮书》系统阐释了BC技术的产业化路径、核心优势与可持续发展潜力,标志着这一
近日,正泰新能与秘鲁领先的可再生能源企业INSOELECSOLAR携手推进的3.2MW光伏项目正式投入运营。该项目位于秘鲁伊卡市的Agrolatina工厂,距离首都利马仅数小时车程。该项目不仅为当地葡萄种植产业注入绿色动能,更以高效光伏技术推动区域可持续发展。项目采用5080块正泰新能自主研发的ASTRON5系列组件
近日,扬州举行钙钛矿产业专题招商会,扬州开发区钙钛矿创新中心现场揭牌。报道中介绍,专题招商会现场8个项目集中签约,总投资约17亿元。8个项目中,产业类项目4个,科创类项目4个,项目签约,标志着扬州开发区在钙钛矿产业领域又迈出了坚实的一步,也为产业的发展注入了新的活力。据悉,本次活动签约
4月21日,钧达股份发布公告称,截至本公告出具之日,香港联交所上市委员会已举行上市聆讯,审议了公司本次发行上市的申请。根据本次发行上市的安排,公司按照有关规定在香港联交所网站刊登本次发行上市聆讯后资料集,该聆讯后资料集为公司根据香港联交所、香港证券及期货事务监察委员会的要求而刊发,
4月21日,全球知名知识产权综合信息服务提供商IPRdaily发布了《全球太阳能电池及组件发明专利排行榜(TOP50)》《全球钙钛矿太阳能电池发明专利排行榜(TOP30)》和《全球TOPCon太阳能电池发明专利排行榜(TOP30)》三大榜单。其中,在全球钙钛矿专利布局前三的企业中,天合光能作为唯一的中国企业,以
4月16日,由中国光伏行业协会指导、晶澳科技主办的沙戈荒专场论坛暨光伏极限挑战团「极境寻光」之旅第二站盛大启幕。继漠河“极寒攻坚”后,本次活动直接跨越至中国排名第四的沙漠#x2014;#x2014;浩瀚壮丽的腾格里,开展“大漠平沙”。政企领导、权威专家、合作伙伴及行业媒体齐聚于此,共同探讨沙漠光
绿色工厂拔地而起,新能源汽车等产业加速布局……作为海南自贸港的重要窗口,海口国家高新区大力培育以绿色为底色的新质生产力,降碳、减污、扩绿与经济增长协同推进,展现出绿色发展新气象。绿色园区建设引领发展2023年12月,海口国家高新区成功入选生态环境部首批城市和产业园区减污降碳协同创新试点
宁夏银川,素有“塞上江南”之称,独特的地理环境使其成为光伏技术极限性能的试金石。这里光照资源丰富,但严苛的环境条件——夏季组件表面温度高达65℃以上、年均80多天的沙尘天气以及昼夜极端温差——对光伏组件的性能和可靠性提出了极高要求。在这一背景下,异质结技术凭借其卓越的发电性能、更低的
4月7日,海南省发展和改革委员会发布关于我省申报第五批能源领域首台(套)重大技术装备推荐名单的补充公示。原文如下:海南省发展和改革委员会关于我省申报第五批能源领域首台(套)重大技术装备推荐名单的补充公示各有关单位:根据《国家能源局综合司关于组织开展第五批能源领域首台(套)重大技术装
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!