登录注册
请使用微信扫一扫
关注公众号完成登录
但是,如果想要获得宽带抗反射涂层,则必须添加额外的层[ 1 ]。对于双层抗反射涂层,根据Rids [ 4 ] 的报告,可以使用等式(3)和(4)优化设计。折射率如下堆叠:n Si > n 1 st > n 2 nd > n air,其中n 1 st和n 2 nd表示抗反射涂层的第一层和第二层的折射率。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.27(n 1 st),1.51(n 2 nd),61 nm(d 1 st)和91 nm(d 2 nd)。考虑到实际材料,将Al 2 O 3与TiO 2 [ 5 ]结合,并将MgF 2与ZnS [ 6 ]结合以构成双层抗反射涂层。
根据Bouhafs等人的报告。[ 7 ],硅上三层抗反射涂层的设计可以用公式(5) - (7)优化,其中n 1 st,n 2 nd和n 3 rd是第一层,第二层的折射率层和第三层。折射率以n Si > n 1 st > n 2 nd > n 3 rd > n 空气的顺序降低。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.52(n 1 st),1.85(n 2 nd),1.36(n 3 rd),55 nm(d 1 st),74 nm(d 2 nd)和101nm(d 3 rd)。三层抗反射涂层,例如SiO 2 / SiO 2 -TiO 2 / TiO 2 [ 1 ]和SiO x / SiO x N y / SiN x [ 8采用降低硅太阳能电池的反射率和提高效率。
显然,三层抗反射涂层在这三种结构中显示出最低的反射率[ 1 ]。因此,光伏产业非常愿意采用三层结构以获得更好的光伏性能。尽管作为三层抗反射涂层的第一层具有适当的折射率(n = 2.26),但由于其表面钝化能力差,TiO 2似乎不是最佳选择,这对开路电压是不利的。太阳能电池[ 1 ]。对于SiN x,一方面,采用PECVD(等离子体增强化学气相沉积)方法,在沉积过程中,其折射率可以从1.98调整到2.98 [ 9]]。另一方面,由于固定正电荷密度高,氢含量高,SiN x具有优异的表面钝化能力,有利于提高开路电压[ 8 ]。因此,在光伏工业中,考虑到抗反射效果,表面钝化和工艺的简单性,抗反射涂层通常由通过PECVD沉积的具有不同折射率的三个SiN x层构成。
尽管随着折射率的增加可以改善SiN x的表面钝化效果,但寄生吸收变得更加严重。因此,为了平衡,第一SiN x层的折射率通常约为2.37(n 1 st)。相应地,根据等式(5),将另外两个SiN x层的最佳折射率确定为1.85(n 2 nd)和1.44(n 3 rd)。当设计波长为550 nm(λ 空气)时,每个SiN x层的最佳厚度确定为58 nm(d 1)根据等式(7), st),74nm( d 2 nd)和95nm( d 3 rd)。
然而,可以发现第二层和第三层的折射率不能通过SiN x [ 9 ]实现。因此,Kuo等人。采用SiO x N y(n = 1.8)作为第二层,SiO x(n = 1.46)作为第三层[ 8 ],两者都可以用PECVD方法容易地集成到SiN x沉积工艺中。在晶体硅太阳能电池的实际生产中,在PECVD管式炉中同时沉积240个带有抗反射涂层的部件,这意味着控制每个部件之间的一致性是特别重要的。当SiO x N.在沉积y时,需要同时将三种气体(SiH 4,NH 3和N 2 O)注入管式炉中,这对于控制稠度是一个很大的挑战。Kuo等人。使用计算出的最佳厚度(59.78,76.39和94.18 nm)作为每层的实际厚度,从而产生令人印象深刻的抗反射效果[ 8]。然而,整个厚度高达230nm,这显着增加了抗反射涂层的成本。此外,由于采用了烧穿银触点金属化,涂层厚度高达230 nm肯定会影响银和硅之间的接触。因此,为了平衡成本,电极接触和抗反射效果,抗反射涂层的整个厚度在批量生产中通常为约80n。
因此,在本报告中,为了寻求在大规模生产中具有较低反射率的更可行的抗反射涂层结构,采用SiOx代替传统的三层SiNx抗反射涂层的第三层,保留另外两层。这种新型抗反射涂层用于提高单晶硅PERC(钝化发射极和后部电池)太阳能电池的效率,预计在未来几年内将主导光伏市场。
2。材料和方法
采用硼掺杂的单晶硅晶片,其长度为156.75mm,厚度为180μm,电阻率为约0.8Ω·cm。工业化单晶硅PERC太阳能电池的制造工艺流程如图1所示。
图1. 工业化单晶硅太阳能电池的制造工艺流程。
首先用基于碱的蚀刻溶液对切割后的单晶硅晶片进行纹理化。然后,将样品转移到管式炉中以完成磷扩散和发射体形成。随后,用湿法蚀刻技术完成磷硅酸盐玻璃(PSG)的去除,边缘隔离和后表面抛光。之后,依次通过ALD(原子层沉积)和PECVD沉积氧化铝和氮化硅,以在后表面上形成钝化叠层(Al2O3/ SiNx)。之后,仍然使用PECVD在前表面上沉积抗反射涂层。在Al2O3/ SiNx之后通过激光烧蚀局部打开堆叠,将电极浆料(背面银,背面铝和正面银)丝网印刷并干燥。最后,将样品在网带炉中烧结以完成金属化并完成太阳能电池制造过程。
在沉积抗反射涂层期间,改变气体源以调节层组成。对于SiNx,采用硅烷(SiH4)和氨(NH3)作为气源。并且对于SiOx,氨被笑气(N2O)代替。详细地说,两个具有不同折射率(n = 2.37和n = 2.09)的SiNx层和一个SiOx层(n= 1.46)组合形成三层抗反射涂层。如上所述,对稠度的控制特别重要,因为在管式炉中同时制造240个样品。调节和优化气流(SiH4和N2O),压力,射频功率和不同区域的温度以改善一致性。在优化之后获得以下所示的结果。为了比较,还采用传统的SiNx三层抗反射涂层来制造太阳能电池,即采用折射率为1.99的SiNx层作为第三层。
在完成太阳能电池的整个制造工艺流程之后,通过电流注入进行载流子诱导的缺陷的钝化,以抑制PERC太阳能电池的严重的光诱导的劣化。
在实验之前,进行理论分析以探索SiO x层的最佳厚度。对于纹理化的晶片,光线倾斜地穿过抗反射涂层,这将增加光学路径长度。此外,最初从表面反射的光的比例可以第二次到达表面并且还有另一个进入晶圆的机会[ 10 ]。因此,鉴于与平面晶圆的这些差异,采用了来自PV Lighthouse的SunSolve仿真软件,而不是上述方程式,以进一步提高理论分析的准确性。将蒙特卡罗射线追踪与薄膜光学相结合,SunSolve可以确定所选光谱下太阳能电池或太阳能模块的光学损耗[11 ]。
如图2所示,模拟结构由三层抗反射涂层,高度为2μm的随机直立金字塔纹理,厚度为170μm的单晶硅晶片,平面后表面,Al 2 O组成。3 / SiN x钝化叠层,以及从上到下的铝电极。排除前母线和指状物以聚焦在抗反射涂层上。
图2. SunSolve中单晶硅PERC太阳能电池的模拟结构。排除前母线和指状物以聚焦在抗反射涂层上。
三层抗反射涂层的模拟参数列于表1中。第一SiN x层和第二SiN x层的参数分别固定为20nm(n = 2.37)和45nm(n = 2.09)。调整第三层的参数,包括材料,折射率和厚度。
表 1.SunSolve中单晶硅PERC太阳能电池的三层抗反射涂层的模拟参数。
3.结果
3.1。仿真结果
在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线如图3所示。可以发现,低于约550nm,具有SiOx作为第三层的样品具有比具有SiNx作为第三层的样品低得多的反射率。随着SiOx第三层厚度的增加,低于约400nm的反射率降低。相反,在400nm和550nm之间,反射率增加。有趣的是,在高于约600nm的情况下,随着厚度增加,反射率也降低。当SiOx厚度落在30nm和40nm之间时,SiO的反射率x第三层样品在约600nm以上接近SiNx第三层样品。
图3. 在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线。列出了相应的加权平均反射率(WAR)。
根据Bouhafs等人的报告。[ 7 ],加权平均反射率(WAR)使用以下等式(8)计算,因为太阳能电池性能也受光子通量和内部量子效率的影响。˚F 我(λ) ,Q 我(λ) ,和R(λ)表示的光子通量,内部量子效率和反射率,分别在波长λ 我(λ 1(300纳米)≤ λ 我 ≤ λ 2(1100nm))。内部量子效率数据来自单晶硅PERC太阳能电池。每种抗反射涂层的相应WAR值列于图3中。
可以发现,随着SiO x第三层厚度的增加,WAR从3.13%(10nm SiO x)降低到2.46%(50nm SiO x)。显然,用10nm SiO x作为第三层的15nm SiN x的替代物不能改善反射率,这意味着SiO x厚度应该至少为20nm。另一方面,考虑到所施加的烧穿银接触金属化,三层抗反射涂层的厚度增加受到限制,以保证银和硅之间的有效接触。因此,三个SiO x 在以下实验中,在20nm,30nm和40nm下使用厚度。
3.2。太阳能电池
根据模拟结果,采用具有三种不同厚度的SiO x第三层来构建抗反射涂层,即20nm,30nm和40nm,得到三组单晶硅PERC太阳能电池。具有15nm SiN x第三层的组用作对照。每组包含约100个样品,并且光伏参数在箱形图中显示(图4)。可以发现,由于存在少数异常值,一些平均值显着低于中值。因此,提取中值并列于表2,这可以更好地反映实际情况。此外,与15 nm SiN x相比,效率提高图 4d中的组也用中值计算。结果表明,用SiO x作为第三层代替SiN x可以有效地改善短路电流(I sc)。当20nm SiO x第三层可以产生40mA的电流增益时,通过将SiO x厚度增加到30nm或40nm,可以实现高于20mA的另一增益。该电流改善与模拟结果一致,表明反射率在短波长下降。除了电流,其他两个光伏参数,即开路电压(V oc)和填充因子(FF),具有很小的变化,这意味着用SiO x作为第三层替代SiN x在前表面钝化和前栅极金属化方面没有差别。结果,由于短路电流的改善,光电转换效率(Eff)得到改善。由于非常相似的电流,30nm和40nm的SiO x基团具有非常相似的效率,其比SiN x基团高约0.15%(绝对值)。另外,从在示出的箱形图图4,可以发现,这种更换的SiN X与的SiO X由于第三层在一定程度上对电流分布产生负面影响,导致效率分布略有扩大。如上所述,所采用的PECVD装置设计用于工业生产,并且在管式炉中同时制造240个样品。虽然我们调整和优化了沉积条件以提高一致性,例如气流(SiH 4和N 2 O),压力,射频功率和不同区域的温度,但仍需要对条件进行微调以进一步调整减少分布宽度和异常值的数量。
图4. 光电参数的箱形图(一个 -open电路电压,b -short电路电流,Ç -fill因子,和d -efficiency)与抗反射涂层的不同层第三制造的单晶硅PERC太阳能电池。每组包含约100个太阳能电池。异常值和平均值由实心菱形和空心方块表示。d中的实心黑球表示与15nm SiN x组相比的中值效率增益。
表2. 用不同的第三层抗反射涂层制造的单晶硅PERC太阳能电池的光伏参数。每组包含约100个太阳能电池,并列出中值。
为了研究电流改善的起源,测量了反射率和外量子效率(EQE)。应当注意,因为采用工业生产设备来沉积抗反射涂层,所以SiO x是第三层的厚度之间的组差异可能被正常波动所掩盖。因此,仅选择一组SiO x第三层与SiN x基团进行比较。考虑到效率增益和经济性,30 nm SiO x第三层是最佳选择,因为与40 nm SiO x相比,它具有非常相似的效率增益并且消耗更少的原材料。一个30nm SiO的反射率曲线X样本和一个15纳米的SiN X的金属化前的样品示于图5 A,和金属化后的EQE曲线展出图5湾 由于相应测试仪器的限制,图5中的两个波长范围之间存在轻微差异,即反射率为350-1050nm,EQE为300-1100nm。平滑反射曲线以使结果更容易观察。可以发现,与15nm SiN x样品相比,30nm SiO x样品具有低于约550nm的显着较低的反射率和高于约600nm的几乎相同的反射率,这与模拟结果一致。在金属化之后,30nm SiO x样品具有低于约550nm的显着更高的EQE和高于约600nm的几乎相同的EQE,这与反射率结果一致。由于EQE改善,30nm SiO x样品表现出更高的短路电流,这证实了上述光伏参数。
图5. (a)金属化前30nm SiO x第三层样品和15nm SiN x第三层样品的反射曲线。(b)金属化后30nm SiO x第三层样品和15nm SiN x第三层样品的外量子效率曲线。
3.3。太阳能组件
为了检查基于SiOx的单晶硅PERC太阳能电池作为第三层抗反射涂层是否具有可靠性问题,需要制造太阳能模块。如上所述,30nm的厚度被认为是SiOx作为第三层抗反射涂层的最佳选择。因此,制造另外1200个具有30nm SiOx的单晶硅PERC太阳能电池,并且根据效率对整个1300个太阳能电池进行分类。因此,480个太阳能电池的效率水平为21.5%(21.5%≤Eff挑选出<21.6%)来制造八个太阳能模块。两个太阳能模块用于检查光诱导降解(LID),另外两个用于检查电位诱导降解(PID)。标准测试条件下获得通过,即,LID:1000瓦/米2,60℃,和60小时; PID:85°C,85%RH(相对湿度),-1000 V,PID为192 h。具有15nm SiNx的太阳能模块用作对照。具有不同的第三层抗反射涂层的单晶硅PERC太阳能模块的平均电池 - 模块(CTM)比率,LID速率和PID速率,即30nm SiOx和15nm SiNx,列于表3中。很明显,太阳能电池组件具有30纳米的SiOx具有比具有15nm SiNx的CTM比略低的CTM比率,这可归因于低于约550nm的光谱响应优势。已知太阳能模块的EVA(乙烯 - 乙酸乙烯酯共聚物)封装材料将吸收短波长的光,导致部分掩盖相应的光谱响应优势。根据CTM比率,可以推断的是,替换为15nm的SiNX与30纳米的SiOX可能带来约0.9 W的用于太阳能电池组件的平均输出功率增益。30nm SiOx太阳能模块的LID和PID速率接近15nm SiNx的LID和PID速率。此外,从LID测试前后的电致发光图像(图6b)或PID测试(图6c,d),太阳能模块中没有存在严重劣化的太阳能电池,这证实了具有30nm SiOx的太阳能电池作为第三层抗反射涂层的一致性。因此,这种新型抗反射涂层不会对太阳能组件的可靠性产生负面影响。
4.进一步讨论
在上面的结果中,缺乏内部量子效率数据,这对于评估抗反射涂层的寄生吸收是必不可少的。因此,为了解决这个问题,最近制造了具有不同第三层(即15nm SiN x和30nm SiO x)的抗反射涂层的新太阳能电池样品。每组包含约400个太阳能电池,平均光伏参数列于图7中。应该注意的是,因为已经应用了其他几种优化方法,例如晶片电阻率降低,磷掺杂分布调整以及利用热生长SiO 2改善表面钝化薄层(~2 nm),光伏性能取得了良好进展。在此基础上,当开路电压和填充因子几乎保持不变时,第三层抗反射涂层的改变导致56mA的短路电流增益和0.13%(绝对值)的效率增益。测量了两种太阳能电池的反射率,外量子效率和内量子效率,如图7所示。可以发现,改变后短波长的反射率和EQE得到改善,这与之前的结果一致。相反,IQE的下降低于约400纳米。一方面,改变的抗反射涂层是第三层,它不与硅衬底直接接触。另一方面,开路电压根据先前和当前结果几乎没有变化。因此,据信表面钝化不受第三层抗反射涂层改变的影响。相应地,IQE下降到约400nm以下可归因于寄生吸收的增加,这可能是由SiO x引起的。
事实上,除了本报告中的空气优化外,太阳能电池的抗反射涂层可以直接针对玻璃/ EVA封装进行优化,预计这对于改善太阳能模块的输出功率更有利。然而,这种策略有些不可行,因为太阳能电池的几乎所有表征方法都是在空气中进行的,例如IV(电流 - 电压),QE(量子效率)和反射率。然而,可以根据理论计算和实验结果讨论这两种策略之间的差异。如上所述,第一SiNx抗反射涂层的折射率通常约为2.37。根据等式(5)(nair用nEVA代替,其他两个SiNx层的最佳折射率确定为玻璃/ EVA封装的2.26(n2nd)和2.15(n3rd)(nglass=nEVA= 1.50)。相反,空气的值为1.85(n2nd)和1.44(n3rd),远低于封装的值。从另一个角度来看,可以根据实验结果估计由不同光学环境引起的增益/损失。当SiNx时第三层抗反射涂层被SiOx代替,太阳能电池和太阳能模块的相对性能改进分别为0.70%(绝对0.15%)和0.30%(绝对0.9W)。可以推断,当在模块中实施SiOx时,太阳能电池中的性能增益降低了57%。
5.前景
在本报告中,采用三层结构来构建单晶硅PERC太阳能电池的抗反射涂层。然而,仅调整和优化第三层抗反射涂层,另外两层是固定的。这种结构改进使太阳能电池的效率增益为0.15%。可以预期,如果其他两层也参与抗反射涂层的优化,则太阳能电池的反射率和转换效率将进一步提高。
另一方面,除了太阳能电池的进一步改进之外,还应该注意太阳能电池组件。EVA封装材料在短波长下的吸收导致部分掩盖具有SiOx作为第三层的太阳能电池的光谱响应优势,这导致太阳能模块的输出功率增益仅为0.9W。因此,通过增强短波长的封装材料透射率,可以增加CTM比,并且期望实现更高的输出功率增益。
目前,抗反射涂层的进一步优化正在进行中,并且已经实现了太阳能电池的平均效率增益为0.2%。结合晶圆电阻率降低,磷掺杂分布调整和表面钝化改善,单晶硅PERC太阳能电池的平均效率增长到21.93%。应该注意的是,如果应用选择性发射极技术,预计太阳能电池效率将达到22.1%。对于太阳能模块,需要与供应商建立合作,以减少短波长封装材料的吸收,而不会降低太阳能模块的可靠性。
6。结论
在光伏工业中,通常采用由具有不同折射率的三个SiNx层组成的抗反射涂层,以降低反射率并提高单晶硅PERC太阳能电池的效率。然而,由于SiNx的物理限制,不能实现低至约1.40的折射率,这是第三层三层抗反射涂层的最佳值。因此,在本报告中,第三层被SiOx取代,它具有更合适的折射率1.46,并且可以很容易地集成到SiNx中采用PECVD方法沉积工艺。通过使用SunSolve的模拟和分析,选择三种不同的厚度,即20nm,30nm和40nm,以构建SiOx第三层。与15nm SiNx相比,SiOx第三层可以增加太阳能电池的短路电流,从而提高转换效率。尽管太阳能电池效率随着SiOx第三层厚度的增加而增加,但是30nm厚度是最佳选择,因为与40nm厚度相比,它具有非常相似的效率增益并且消耗更少的原材料。替换为15nm的SiNX与30纳米的SiOX因为第三层抗反射涂层可以带来0.15%的效率增益。根据反射率和EQE测量,该效率改进源于低于约550nm波长的反射率降低和光谱响应增强。然而,相反,IQE下降到约400nm以下,这可归因于SiOx引起的寄生吸收增加。至于太阳能电池组件,由于EVA封装材料吸收短波长的光,太阳能电池的光谱响应优势为30 nm SiOx部分被遮盖,导致太阳能电池组件的CTM比率略低,输出功率增益仅为0.9 W. LID和PID测试结果表明,这种新型三层抗反射涂层不会对太阳能组件的可靠性产生负面影响,可以大规模生产。
作者:张树德1,2 OrcID,岳瑶2,党党虎2,Weifei Lian 2,3,洪强强2,Jiansheng Jie 1,*,Qingzhu Wei 2,4,*,知春倪2,3,肖晓红1和灵芝谢5
1苏州大学功能纳米与软材料研究所(FUNSOM)江苏省碳基功能材料与器件重点实验室,苏州215123
2苏州泰乐森太阳能科技有限公司,江苏常熟215542
3南京航空航天大学,南京210016
4常熟理工学院,江苏常熟215500
5四川大学新能源与低碳技术研究所,成都610065
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
硅料五月硅料产量复盘后约9.4万吨,六月产量小幅增加,达9.7万吨,以硅耗量1,900吨/GW折算约合51GW。提产厂家主要来自新疆与六月份进入丰水期的四川地区。部分包头、新疆产能原订七月提产,目前仍受政策影响暂缓。然云南丰水期,部分企业新增产能投产,七月环比增量预计在1.2万吨左右,产量则来到10.9
硅料价格近期市场消息影响,国内硅料企业响应政府“反内卷”,方案愈发明确,多家硅料企业反应后续将基于“成本”调整产品报价,本周买方端观察,购买硅料的企业主要为缺乏自身硅料库存者小批量买进,尚无大批量成交。本周价格区间参差不齐,落在每公斤35-40元人民币之间的水平,报价受惠近期市场消息
北极星储能网获悉,近日,特斯拉全球最大充电站OasisSupercharger在美国加州投运,这也是特斯拉承诺已久的未来电动汽车充电站,配备光伏和离网电池储能。去年,特斯拉宣布启动了名为“Oasis”的充电站项目,拟建设一个配套光伏发电和电池储能系统的新型超级充电站,可在加利福尼亚州LostHills实现离网
7月8日,苏州固锝披露2024年度向特定对象发行A股股票的募集说明书(修订稿)。公司本次向特定对象发行股票募集资金总额不超过88,680.00万元(含本数),主要用于“苏州晶银新材料科技有限公司年产太阳能电子浆料500吨项目”、“小信号产品封装与测项目”、“固锝(苏州)创新研究院项目”与“补充流动
7月3日,InfoLinkConsulting公布本周光伏供应链价格。硅料价格本周价格仍处僵持,与上周相同整体成交量低迷,多数商谈尚未底定,且近期市场消息流传,影响采购方情绪观望,原先衡量七月采购订单再度延后,且拉晶自身有一定量体的硅料库存,整体压价明确态度。对于卖方而言,目前正是艰苦时期,厂家提产
6月26日,InfoLink发布最新光伏产业链价格。硅料价格目前成交量持续低迷,多数商谈尚未底定,采购方因自身仍有一定量体的硅料库存,整体压价明确态度,对于硅料采购要价下探到30-34元人民币不等,仍持续听到下探30块钱以下的迹象,目前尚无匹量成交。对于卖方而言,目前正是艰苦时期,厂家仍有提产计划
“未来两到三年内,将有一半以上的企业退出光伏制造。”当警报初响时,或许更多光伏人视之为“言过其实”。然而,时至当下,当停产、裁员、延期、破产等如泄洪般倾泻直下而无止意之时,或许无人不意识到这场深度调整的光伏周期之战短时难以停歇,突围与生存是每家光伏企业正在奋力解答的生死命题。而“
6月17日,由上海电建公司承建的山东华电莱州土山一期600兆瓦光伏发电项目G标段顺利并网发电。该项目位于山东省莱州市土山镇银海化工园区周边,集“光伏发电+盐业生产”于一体,可实现“盐光互补”复合产业模式,本期建设规模600兆瓦,占地1.3万亩,是山东区域内在建单体规模最大的光伏项目。项目拟安装
硅料价格目前成交量较少落定,采购方因自身仍有一定量体的硅料库存,整体压价明确态度,对于硅料采购要价下探到30-34元人民币不等,仍持续听到下探30块钱以下的迹象,目前尚无匹量成交。对于卖方而言,目前正是艰苦时期,目前订单落定较少,且成本无法负荷当前买方要价,一线厂家价格仍旧僵持。本周新
第18届SNEC国际太阳能光伏与智慧能源展于上海国家展会中心隆重登场,厂家在历经2年的亏损之下缩减开支,展场直观的感受能明显看到人潮减少。观察今年整体光伏产业情况,上半年受到国内抢装影响,需求表现仍超乎预期,但下半年需求开始转弱,尤其七至八月短期接单较不明朗,让大家更多的讨论如何改善现
硅料五月硅料产量与上月持平,约10.2万吨,以硅耗量2,000吨/GW折算约合51GW。困境之下,我国硅料企业多处于降负荷运行状态、部分中小厂家提前检修。龙头企业策略确定将在后续进行产能置换,同时部分新疆厂家存在复产计划,但仍需观察订单状况。六月硅料产量略有增加,预计整体产量在10.6万吨,以硅耗量
7月10日,青岛市人民政府印发《青岛市加快经济社会发展全面绿色转型实施方案》。文件提出,积极稳妥发展非化石能源。积极布局海洋新能源,在青岛西海岸新区、即墨区海域集中开发海上风电,加快深远海海上风电项目和即墨区海上光伏项目建设,谋划储备远海漂浮式光伏项目,力争2030年建成千万千瓦级海上
7月15日,A股上市公司*ST沐邦发布半年度业绩预告,公司预计2025年1-6月预计减亏,归属于上市公司股东的净利润为-1.80亿至-1.50亿,净利润同比增长15.54%至29.61%。本期业绩预减的主要原因1、光伏产业链价格持续下滑,行业竞争愈发激烈,硅料和硅片均价大幅下降,且硅片价格降幅大于硅料;同时,制造费
近日,中来股份电池研发团队关于中来独特注入金属化(JSIM)技术提效机理研究取得重要突破,研究成果在太阳能领域的权威期刊“ProgressinPhotovoltaics:ResearchandApplications”上正式发表。中来与新南威尔士大学光伏与可再生能源工程学院密切配合,共同完成了此次关于JSIM技术具有超低复合性能优势
北极星储能网获悉,7月14日,广东汕头市工业和信息化局开展2026年省级制造业当家重点任务保障专项资金(新一代信息技术和产业发展)支持电子信息产业方向项目入库,提到支持新型储能产业发展。支持新型储能产业领域具备较大竞争优势的储能电池及相关材料、设备、系统,具体包括:一是储能型锂离子电池
北极星售电网获悉,7月10日,山东青岛市人民政府发布关于印发《青岛市加快经济社会发展全面绿色转型实施方案》(以下简称《方案》)的通知。《方案》指出,加快构建新型电力系统。统筹本地电网结构优化和互联输电通道建设,推进琅琊、寨里等500千伏骨干电网工程。加快微电网、虚拟电厂、源网荷储一体化
7月13日,福达合金发布关于筹划重大资产重组暨签署收购意向协议的提示性公告,公告显示,福达合金材料股份有限公司(简称“公司”)正在筹划以现金方式购买浙江光达电子科技有限公司(简称“光达电子”)不低于51%的股权,具体收购比例待进一步论证和协商。据悉,本次交易拟采用现金方式,不涉及公司发
一鲸落万物生。面对光伏产业供需失衡困局,或许更多人寄希望于巨头的陨落。当下停产潮、退出潮、破产潮确已袭来。有数据统计,今年以来已有超50家光伏企业破产清算。谁又是下一家呢?事实上,已历经“四起三落”的光伏史上,每次洗牌均少不了大厦倾塌,特别是第一次光伏大洗牌,“炸圈”案例仍旧历历在
7月8日,润阳新能源官微消息,润阳云南曲靖的13GWN型高效太阳能电池基地复工复产了,从停机状态到满负荷生产,仅用10天,上演了一场光伏版的"速度与激情",可谓是自救信号拉满。从IPO折戟到并入通威股份告败,润阳股份在市场上一直不缺关注度。近期,更是因为一连串的“招安”化债将其推向市场热议的风
7月10日,海南省人民政府发布《海南低碳岛建设方案》。《方案》明确,2030年前,全省实现碳达峰,经济社会发展向低碳方向快速迈进。2045年前,全面建成低碳岛,全省二氧化碳年排放量比峰值期下降70%,建成零碳、高效、智慧、韧性、安全的新型能源系统。2060年前,全省实现碳中和。重点任务方面,《方案
北极星售电网获悉,7月10日,海南省人民政府发布关于印发《海南低碳岛建设方案》(以下简称《方案》)的通知。《方案》指出,2030年前,全省实现碳达峰,经济社会发展向低碳方向快速迈进。2045年前,全面建成低碳岛,全省二氧化碳年排放量比峰值期下降70%,建成零碳、高效、智慧、韧性、安全的新型能源
北极星储能网获悉,7月4日,深圳坪山区人民政府发布《深圳市坪山区落实“双碳”战略进一步推动新能源产业高质量发展的若干措施》。其中指出,支持企业建设新型电池及储能、充电设施、光伏、氢能、智能电网和综合能源服务等领域中试生产线,对项目总投资额(不含土建)在500万元以上的,按设备投资额的1
随着全球能源转型加速,光伏行业正以前所未有的速度吸纳从研发到运维的全方位人才。据国际能源署(IEA)预测,在2050年净零排放的目标驱动下,清洁能源劳动力的需求将达到约3,000万,企业、学校、政府须加快合作以满足能源转型带来的就业需求。天合光能致力于成为全球光储智慧能源的领先者,并始终走在
近日,晶科能源在澳大利亚悉尼与新南威尔士大学达成技术研发合作备忘录,并与长三角国家技术创新中心签署共建联合创新中心协议。合作将依托晶科能源的产业实践基础,聚焦光伏回收与可持续发展核心方向,推动新能源技术研发产业化与人才联合培养。晶科能源将在未来五年持续支持联合实验室的建设与运营,
北极星储能网获悉,7月11日,甘孜州发展和改革委员会发布《关于甘孜州道孚龚吕二期等5个光伏项目法人优选的公告》。公告显示,5个项目光伏总装机2.8GW,采用“1#x2B;N”项目建设模式,注重在项目建设中因地制宜,通过光牧融合、光旅融合等方式带动当地产业(农业、牧业等)发展,推动乡村振兴,助力共
7月11日,四川甘孜州发展和改革委员会发布《关于甘孜州道孚龚吕二期等5个光伏项目法人优选的公告》。根据公告,项目总规模280万千瓦,包含道孚龚吕二期130万千瓦光伏项目、道孚亚日二期50万千瓦光伏项目、道孚格哈普一期50万千瓦光伏项目、石渠10万千瓦供电保供光伏项目、雅江县7号地块光伏发电项目。
这周一,本号还谨慎提示资本可以抢跑。结果,周二开始,资本市场集体抢跑,一把拉满,就像去年A股国庆行情一样,这也再次说明了咱们资本市场的有效性和功利性。一根阳线,改变信仰。光伏板块重燃激情,也再次印证了巴菲特的格言,在最悲观的时候,可以更乐观一些。关于这一轮光伏热潮,风起于何处,又
7月9日,爱旭ABC零碳示范电站开服#x2014;东莞站活动成功举行。凤顺新能源、伊西思等多家爱旭伙伴参加,庆贺锦多宝科技园ABC分布式光伏5.6MW电站这一ABC零碳示范电站的正式投运,见证爱旭ABC组件在工商业场景中的超高价值。领导致辞共庆ABC零碳示范电站开服东莞市凤顺新能源总经理丁国良发表致辞,欢迎
硅异质结太阳能电池对紫外线(UV)敏感。二次离子质谱(SIMS)分析表明,365nm紫外线会解离Si-H键,导致氢原子从a-Si:H/c-Si界面迁移并形成亚稳态缺陷。东方日升全球光伏研究院联合东南大学,针对n型异质结电池和组件的紫外稳定性进行了深度机理性的研究,开发了低紫外损伤连续PECVD工艺,通过优化i1钝化层
7月9日,市场监管总局、工业和信息化部发布的《计量支撑产业新质生产力发展行动方案》指出,面向太阳能、风能、核能、氢能、海洋能、生物质能、地热能等领域,围绕关键核心技术装备自主化发展、能源生产储运基础设施建设、储能系统及相关装备研究及产业化等方向计量需求,开展新能源汽车充换电、核电安
近日,中国光伏行业协会分享了年度报告中第七篇,我国钙钛矿太阳能电池发展情况我国钙钛矿太阳能电池发展情况:(一)钙钛矿技术概述钙钛矿(Perovskite-PVK)是指以俄国地质学家LevPerovski名字命名的一类具有ABX3结构的矿物化合物(如CaTiO3),而具有光伏效应的钙钛矿材料主要是一类具有相同晶体结
近日,由一道新能与QEnergyFrance联合开发建设的法国漂浮式光伏项目顺利并网发电。作为目前欧洲最大规模的漂浮式光伏项目,该项目不仅刷新了法国区域光伏应用的新高度,也成为一道新能拓展国际版图的重要里程碑。项目自2023年启动以来,历经科学选址、生态评估与精密设计,最终于法国中部LesIlotsBland
晶硅-钙钛矿叠层太阳电池因其有望超越单结电池的肖克利-奎伊瑟(Shockley-Queisser)效率极限,而成为当前全球先进光伏技术研究的热点。受制于短波光子的热驰豫损失,传统晶硅单结太阳电池效率的进一步提升面临瓶颈。为此,科学家们提出将宽带隙钙钛矿与晶硅集成,通过构建串联叠层太阳电池,有效减少
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!