登录注册
请使用微信扫一扫
关注公众号完成登录
但是,如果想要获得宽带抗反射涂层,则必须添加额外的层[ 1 ]。对于双层抗反射涂层,根据Rids [ 4 ] 的报告,可以使用等式(3)和(4)优化设计。折射率如下堆叠:n Si > n 1 st > n 2 nd > n air,其中n 1 st和n 2 nd表示抗反射涂层的第一层和第二层的折射率。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.27(n 1 st),1.51(n 2 nd),61 nm(d 1 st)和91 nm(d 2 nd)。考虑到实际材料,将Al 2 O 3与TiO 2 [ 5 ]结合,并将MgF 2与ZnS [ 6 ]结合以构成双层抗反射涂层。
根据Bouhafs等人的报告。[ 7 ],硅上三层抗反射涂层的设计可以用公式(5) - (7)优化,其中n 1 st,n 2 nd和n 3 rd是第一层,第二层的折射率层和第三层。折射率以n Si > n 1 st > n 2 nd > n 3 rd > n 空气的顺序降低。当设计波长为550 nm(λ 空气),每层的最佳折射率和厚度确定为2.52(n 1 st),1.85(n 2 nd),1.36(n 3 rd),55 nm(d 1 st),74 nm(d 2 nd)和101nm(d 3 rd)。三层抗反射涂层,例如SiO 2 / SiO 2 -TiO 2 / TiO 2 [ 1 ]和SiO x / SiO x N y / SiN x [ 8采用降低硅太阳能电池的反射率和提高效率。
显然,三层抗反射涂层在这三种结构中显示出最低的反射率[ 1 ]。因此,光伏产业非常愿意采用三层结构以获得更好的光伏性能。尽管作为三层抗反射涂层的第一层具有适当的折射率(n = 2.26),但由于其表面钝化能力差,TiO 2似乎不是最佳选择,这对开路电压是不利的。太阳能电池[ 1 ]。对于SiN x,一方面,采用PECVD(等离子体增强化学气相沉积)方法,在沉积过程中,其折射率可以从1.98调整到2.98 [ 9]]。另一方面,由于固定正电荷密度高,氢含量高,SiN x具有优异的表面钝化能力,有利于提高开路电压[ 8 ]。因此,在光伏工业中,考虑到抗反射效果,表面钝化和工艺的简单性,抗反射涂层通常由通过PECVD沉积的具有不同折射率的三个SiN x层构成。
尽管随着折射率的增加可以改善SiN x的表面钝化效果,但寄生吸收变得更加严重。因此,为了平衡,第一SiN x层的折射率通常约为2.37(n 1 st)。相应地,根据等式(5),将另外两个SiN x层的最佳折射率确定为1.85(n 2 nd)和1.44(n 3 rd)。当设计波长为550 nm(λ 空气)时,每个SiN x层的最佳厚度确定为58 nm(d 1)根据等式(7), st),74nm( d 2 nd)和95nm( d 3 rd)。
然而,可以发现第二层和第三层的折射率不能通过SiN x [ 9 ]实现。因此,Kuo等人。采用SiO x N y(n = 1.8)作为第二层,SiO x(n = 1.46)作为第三层[ 8 ],两者都可以用PECVD方法容易地集成到SiN x沉积工艺中。在晶体硅太阳能电池的实际生产中,在PECVD管式炉中同时沉积240个带有抗反射涂层的部件,这意味着控制每个部件之间的一致性是特别重要的。当SiO x N.在沉积y时,需要同时将三种气体(SiH 4,NH 3和N 2 O)注入管式炉中,这对于控制稠度是一个很大的挑战。Kuo等人。使用计算出的最佳厚度(59.78,76.39和94.18 nm)作为每层的实际厚度,从而产生令人印象深刻的抗反射效果[ 8]。然而,整个厚度高达230nm,这显着增加了抗反射涂层的成本。此外,由于采用了烧穿银触点金属化,涂层厚度高达230 nm肯定会影响银和硅之间的接触。因此,为了平衡成本,电极接触和抗反射效果,抗反射涂层的整个厚度在批量生产中通常为约80n。
因此,在本报告中,为了寻求在大规模生产中具有较低反射率的更可行的抗反射涂层结构,采用SiOx代替传统的三层SiNx抗反射涂层的第三层,保留另外两层。这种新型抗反射涂层用于提高单晶硅PERC(钝化发射极和后部电池)太阳能电池的效率,预计在未来几年内将主导光伏市场。
2。材料和方法
采用硼掺杂的单晶硅晶片,其长度为156.75mm,厚度为180μm,电阻率为约0.8Ω·cm。工业化单晶硅PERC太阳能电池的制造工艺流程如图1所示。
图1. 工业化单晶硅太阳能电池的制造工艺流程。
首先用基于碱的蚀刻溶液对切割后的单晶硅晶片进行纹理化。然后,将样品转移到管式炉中以完成磷扩散和发射体形成。随后,用湿法蚀刻技术完成磷硅酸盐玻璃(PSG)的去除,边缘隔离和后表面抛光。之后,依次通过ALD(原子层沉积)和PECVD沉积氧化铝和氮化硅,以在后表面上形成钝化叠层(Al2O3/ SiNx)。之后,仍然使用PECVD在前表面上沉积抗反射涂层。在Al2O3/ SiNx之后通过激光烧蚀局部打开堆叠,将电极浆料(背面银,背面铝和正面银)丝网印刷并干燥。最后,将样品在网带炉中烧结以完成金属化并完成太阳能电池制造过程。
在沉积抗反射涂层期间,改变气体源以调节层组成。对于SiNx,采用硅烷(SiH4)和氨(NH3)作为气源。并且对于SiOx,氨被笑气(N2O)代替。详细地说,两个具有不同折射率(n = 2.37和n = 2.09)的SiNx层和一个SiOx层(n= 1.46)组合形成三层抗反射涂层。如上所述,对稠度的控制特别重要,因为在管式炉中同时制造240个样品。调节和优化气流(SiH4和N2O),压力,射频功率和不同区域的温度以改善一致性。在优化之后获得以下所示的结果。为了比较,还采用传统的SiNx三层抗反射涂层来制造太阳能电池,即采用折射率为1.99的SiNx层作为第三层。
在完成太阳能电池的整个制造工艺流程之后,通过电流注入进行载流子诱导的缺陷的钝化,以抑制PERC太阳能电池的严重的光诱导的劣化。
在实验之前,进行理论分析以探索SiO x层的最佳厚度。对于纹理化的晶片,光线倾斜地穿过抗反射涂层,这将增加光学路径长度。此外,最初从表面反射的光的比例可以第二次到达表面并且还有另一个进入晶圆的机会[ 10 ]。因此,鉴于与平面晶圆的这些差异,采用了来自PV Lighthouse的SunSolve仿真软件,而不是上述方程式,以进一步提高理论分析的准确性。将蒙特卡罗射线追踪与薄膜光学相结合,SunSolve可以确定所选光谱下太阳能电池或太阳能模块的光学损耗[11 ]。
如图2所示,模拟结构由三层抗反射涂层,高度为2μm的随机直立金字塔纹理,厚度为170μm的单晶硅晶片,平面后表面,Al 2 O组成。3 / SiN x钝化叠层,以及从上到下的铝电极。排除前母线和指状物以聚焦在抗反射涂层上。
图2. SunSolve中单晶硅PERC太阳能电池的模拟结构。排除前母线和指状物以聚焦在抗反射涂层上。
三层抗反射涂层的模拟参数列于表1中。第一SiN x层和第二SiN x层的参数分别固定为20nm(n = 2.37)和45nm(n = 2.09)。调整第三层的参数,包括材料,折射率和厚度。
表 1.SunSolve中单晶硅PERC太阳能电池的三层抗反射涂层的模拟参数。
3.结果
3.1。仿真结果
在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线如图3所示。可以发现,低于约550nm,具有SiOx作为第三层的样品具有比具有SiNx作为第三层的样品低得多的反射率。随着SiOx第三层厚度的增加,低于约400nm的反射率降低。相反,在400nm和550nm之间,反射率增加。有趣的是,在高于约600nm的情况下,随着厚度增加,反射率也降低。当SiOx厚度落在30nm和40nm之间时,SiO的反射率x第三层样品在约600nm以上接近SiNx第三层样品。
图3. 在SunSolve中具有不同第三层抗反射涂层的单晶硅PERC太阳能电池的模拟反射曲线。列出了相应的加权平均反射率(WAR)。
根据Bouhafs等人的报告。[ 7 ],加权平均反射率(WAR)使用以下等式(8)计算,因为太阳能电池性能也受光子通量和内部量子效率的影响。˚F 我(λ) ,Q 我(λ) ,和R(λ)表示的光子通量,内部量子效率和反射率,分别在波长λ 我(λ 1(300纳米)≤ λ 我 ≤ λ 2(1100nm))。内部量子效率数据来自单晶硅PERC太阳能电池。每种抗反射涂层的相应WAR值列于图3中。
可以发现,随着SiO x第三层厚度的增加,WAR从3.13%(10nm SiO x)降低到2.46%(50nm SiO x)。显然,用10nm SiO x作为第三层的15nm SiN x的替代物不能改善反射率,这意味着SiO x厚度应该至少为20nm。另一方面,考虑到所施加的烧穿银接触金属化,三层抗反射涂层的厚度增加受到限制,以保证银和硅之间的有效接触。因此,三个SiO x 在以下实验中,在20nm,30nm和40nm下使用厚度。
3.2。太阳能电池
根据模拟结果,采用具有三种不同厚度的SiO x第三层来构建抗反射涂层,即20nm,30nm和40nm,得到三组单晶硅PERC太阳能电池。具有15nm SiN x第三层的组用作对照。每组包含约100个样品,并且光伏参数在箱形图中显示(图4)。可以发现,由于存在少数异常值,一些平均值显着低于中值。因此,提取中值并列于表2,这可以更好地反映实际情况。此外,与15 nm SiN x相比,效率提高图 4d中的组也用中值计算。结果表明,用SiO x作为第三层代替SiN x可以有效地改善短路电流(I sc)。当20nm SiO x第三层可以产生40mA的电流增益时,通过将SiO x厚度增加到30nm或40nm,可以实现高于20mA的另一增益。该电流改善与模拟结果一致,表明反射率在短波长下降。除了电流,其他两个光伏参数,即开路电压(V oc)和填充因子(FF),具有很小的变化,这意味着用SiO x作为第三层替代SiN x在前表面钝化和前栅极金属化方面没有差别。结果,由于短路电流的改善,光电转换效率(Eff)得到改善。由于非常相似的电流,30nm和40nm的SiO x基团具有非常相似的效率,其比SiN x基团高约0.15%(绝对值)。另外,从在示出的箱形图图4,可以发现,这种更换的SiN X与的SiO X由于第三层在一定程度上对电流分布产生负面影响,导致效率分布略有扩大。如上所述,所采用的PECVD装置设计用于工业生产,并且在管式炉中同时制造240个样品。虽然我们调整和优化了沉积条件以提高一致性,例如气流(SiH 4和N 2 O),压力,射频功率和不同区域的温度,但仍需要对条件进行微调以进一步调整减少分布宽度和异常值的数量。
图4. 光电参数的箱形图(一个 -open电路电压,b -short电路电流,Ç -fill因子,和d -efficiency)与抗反射涂层的不同层第三制造的单晶硅PERC太阳能电池。每组包含约100个太阳能电池。异常值和平均值由实心菱形和空心方块表示。d中的实心黑球表示与15nm SiN x组相比的中值效率增益。
表2. 用不同的第三层抗反射涂层制造的单晶硅PERC太阳能电池的光伏参数。每组包含约100个太阳能电池,并列出中值。
为了研究电流改善的起源,测量了反射率和外量子效率(EQE)。应当注意,因为采用工业生产设备来沉积抗反射涂层,所以SiO x是第三层的厚度之间的组差异可能被正常波动所掩盖。因此,仅选择一组SiO x第三层与SiN x基团进行比较。考虑到效率增益和经济性,30 nm SiO x第三层是最佳选择,因为与40 nm SiO x相比,它具有非常相似的效率增益并且消耗更少的原材料。一个30nm SiO的反射率曲线X样本和一个15纳米的SiN X的金属化前的样品示于图5 A,和金属化后的EQE曲线展出图5湾 由于相应测试仪器的限制,图5中的两个波长范围之间存在轻微差异,即反射率为350-1050nm,EQE为300-1100nm。平滑反射曲线以使结果更容易观察。可以发现,与15nm SiN x样品相比,30nm SiO x样品具有低于约550nm的显着较低的反射率和高于约600nm的几乎相同的反射率,这与模拟结果一致。在金属化之后,30nm SiO x样品具有低于约550nm的显着更高的EQE和高于约600nm的几乎相同的EQE,这与反射率结果一致。由于EQE改善,30nm SiO x样品表现出更高的短路电流,这证实了上述光伏参数。
图5. (a)金属化前30nm SiO x第三层样品和15nm SiN x第三层样品的反射曲线。(b)金属化后30nm SiO x第三层样品和15nm SiN x第三层样品的外量子效率曲线。
3.3。太阳能组件
为了检查基于SiOx的单晶硅PERC太阳能电池作为第三层抗反射涂层是否具有可靠性问题,需要制造太阳能模块。如上所述,30nm的厚度被认为是SiOx作为第三层抗反射涂层的最佳选择。因此,制造另外1200个具有30nm SiOx的单晶硅PERC太阳能电池,并且根据效率对整个1300个太阳能电池进行分类。因此,480个太阳能电池的效率水平为21.5%(21.5%≤Eff挑选出<21.6%)来制造八个太阳能模块。两个太阳能模块用于检查光诱导降解(LID),另外两个用于检查电位诱导降解(PID)。标准测试条件下获得通过,即,LID:1000瓦/米2,60℃,和60小时; PID:85°C,85%RH(相对湿度),-1000 V,PID为192 h。具有15nm SiNx的太阳能模块用作对照。具有不同的第三层抗反射涂层的单晶硅PERC太阳能模块的平均电池 - 模块(CTM)比率,LID速率和PID速率,即30nm SiOx和15nm SiNx,列于表3中。很明显,太阳能电池组件具有30纳米的SiOx具有比具有15nm SiNx的CTM比略低的CTM比率,这可归因于低于约550nm的光谱响应优势。已知太阳能模块的EVA(乙烯 - 乙酸乙烯酯共聚物)封装材料将吸收短波长的光,导致部分掩盖相应的光谱响应优势。根据CTM比率,可以推断的是,替换为15nm的SiNX与30纳米的SiOX可能带来约0.9 W的用于太阳能电池组件的平均输出功率增益。30nm SiOx太阳能模块的LID和PID速率接近15nm SiNx的LID和PID速率。此外,从LID测试前后的电致发光图像(图6b)或PID测试(图6c,d),太阳能模块中没有存在严重劣化的太阳能电池,这证实了具有30nm SiOx的太阳能电池作为第三层抗反射涂层的一致性。因此,这种新型抗反射涂层不会对太阳能组件的可靠性产生负面影响。
4.进一步讨论
在上面的结果中,缺乏内部量子效率数据,这对于评估抗反射涂层的寄生吸收是必不可少的。因此,为了解决这个问题,最近制造了具有不同第三层(即15nm SiN x和30nm SiO x)的抗反射涂层的新太阳能电池样品。每组包含约400个太阳能电池,平均光伏参数列于图7中。应该注意的是,因为已经应用了其他几种优化方法,例如晶片电阻率降低,磷掺杂分布调整以及利用热生长SiO 2改善表面钝化薄层(~2 nm),光伏性能取得了良好进展。在此基础上,当开路电压和填充因子几乎保持不变时,第三层抗反射涂层的改变导致56mA的短路电流增益和0.13%(绝对值)的效率增益。测量了两种太阳能电池的反射率,外量子效率和内量子效率,如图7所示。可以发现,改变后短波长的反射率和EQE得到改善,这与之前的结果一致。相反,IQE的下降低于约400纳米。一方面,改变的抗反射涂层是第三层,它不与硅衬底直接接触。另一方面,开路电压根据先前和当前结果几乎没有变化。因此,据信表面钝化不受第三层抗反射涂层改变的影响。相应地,IQE下降到约400nm以下可归因于寄生吸收的增加,这可能是由SiO x引起的。
事实上,除了本报告中的空气优化外,太阳能电池的抗反射涂层可以直接针对玻璃/ EVA封装进行优化,预计这对于改善太阳能模块的输出功率更有利。然而,这种策略有些不可行,因为太阳能电池的几乎所有表征方法都是在空气中进行的,例如IV(电流 - 电压),QE(量子效率)和反射率。然而,可以根据理论计算和实验结果讨论这两种策略之间的差异。如上所述,第一SiNx抗反射涂层的折射率通常约为2.37。根据等式(5)(nair用nEVA代替,其他两个SiNx层的最佳折射率确定为玻璃/ EVA封装的2.26(n2nd)和2.15(n3rd)(nglass=nEVA= 1.50)。相反,空气的值为1.85(n2nd)和1.44(n3rd),远低于封装的值。从另一个角度来看,可以根据实验结果估计由不同光学环境引起的增益/损失。当SiNx时第三层抗反射涂层被SiOx代替,太阳能电池和太阳能模块的相对性能改进分别为0.70%(绝对0.15%)和0.30%(绝对0.9W)。可以推断,当在模块中实施SiOx时,太阳能电池中的性能增益降低了57%。
5.前景
在本报告中,采用三层结构来构建单晶硅PERC太阳能电池的抗反射涂层。然而,仅调整和优化第三层抗反射涂层,另外两层是固定的。这种结构改进使太阳能电池的效率增益为0.15%。可以预期,如果其他两层也参与抗反射涂层的优化,则太阳能电池的反射率和转换效率将进一步提高。
另一方面,除了太阳能电池的进一步改进之外,还应该注意太阳能电池组件。EVA封装材料在短波长下的吸收导致部分掩盖具有SiOx作为第三层的太阳能电池的光谱响应优势,这导致太阳能模块的输出功率增益仅为0.9W。因此,通过增强短波长的封装材料透射率,可以增加CTM比,并且期望实现更高的输出功率增益。
目前,抗反射涂层的进一步优化正在进行中,并且已经实现了太阳能电池的平均效率增益为0.2%。结合晶圆电阻率降低,磷掺杂分布调整和表面钝化改善,单晶硅PERC太阳能电池的平均效率增长到21.93%。应该注意的是,如果应用选择性发射极技术,预计太阳能电池效率将达到22.1%。对于太阳能模块,需要与供应商建立合作,以减少短波长封装材料的吸收,而不会降低太阳能模块的可靠性。
6。结论
在光伏工业中,通常采用由具有不同折射率的三个SiNx层组成的抗反射涂层,以降低反射率并提高单晶硅PERC太阳能电池的效率。然而,由于SiNx的物理限制,不能实现低至约1.40的折射率,这是第三层三层抗反射涂层的最佳值。因此,在本报告中,第三层被SiOx取代,它具有更合适的折射率1.46,并且可以很容易地集成到SiNx中采用PECVD方法沉积工艺。通过使用SunSolve的模拟和分析,选择三种不同的厚度,即20nm,30nm和40nm,以构建SiOx第三层。与15nm SiNx相比,SiOx第三层可以增加太阳能电池的短路电流,从而提高转换效率。尽管太阳能电池效率随着SiOx第三层厚度的增加而增加,但是30nm厚度是最佳选择,因为与40nm厚度相比,它具有非常相似的效率增益并且消耗更少的原材料。替换为15nm的SiNX与30纳米的SiOX因为第三层抗反射涂层可以带来0.15%的效率增益。根据反射率和EQE测量,该效率改进源于低于约550nm波长的反射率降低和光谱响应增强。然而,相反,IQE下降到约400nm以下,这可归因于SiOx引起的寄生吸收增加。至于太阳能电池组件,由于EVA封装材料吸收短波长的光,太阳能电池的光谱响应优势为30 nm SiOx部分被遮盖,导致太阳能电池组件的CTM比率略低,输出功率增益仅为0.9 W. LID和PID测试结果表明,这种新型三层抗反射涂层不会对太阳能组件的可靠性产生负面影响,可以大规模生产。
作者:张树德1,2 OrcID,岳瑶2,党党虎2,Weifei Lian 2,3,洪强强2,Jiansheng Jie 1,*,Qingzhu Wei 2,4,*,知春倪2,3,肖晓红1和灵芝谢5
1苏州大学功能纳米与软材料研究所(FUNSOM)江苏省碳基功能材料与器件重点实验室,苏州215123
2苏州泰乐森太阳能科技有限公司,江苏常熟215542
3南京航空航天大学,南京210016
4常熟理工学院,江苏常熟215500
5四川大学新能源与低碳技术研究所,成都610065
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
硅料五月硅料产量与上月持平,约10.2万吨,以硅耗量2,000吨/GW折算约合51GW。困境之下,我国硅料企业多处于降负荷运行状态、部分中小厂家提前检修。龙头企业策略确定将在后续进行产能置换,同时部分新疆厂家存在复产计划,但仍需观察订单状况。六月硅料产量略有增加,预计整体产量在10.6万吨,以硅耗量
6月11日,第十八届全球光伏前沿技术大会在上海开幕。天合光能战略、产品与市场负责人张映斌博士受邀发表主题演讲并倡导:随着背面发电技术的进步,光伏行业应与时俱进、全面升级以组件综合效率及综合发电为核心指标的评价新体系。双面发电时代召唤与时俱进的组件评价体系张映斌博士指出,2018年双面组
硅料价格目前成交量较少落定,采购方因自身仍有一定量体的硅料库存,整体压价明确态度,对于硅料采购要价下探到30-34元人民币不等,仍持续听到下探的迹象,目前尚无匹量成交。对于卖方而言,目前正是艰苦时期,目前订单落定较少,且成本无法负荷当前买方要价,一线厂家价格仍旧僵持。本周新单成交贴近
继6月9日宣布钙钛矿/晶体硅30.6%叠层组件效率及829W叠层组件功率双世界纪录后,天合光能今日再传喜讯——叠层组件功率提升至841W,再次打破世界纪录。短短一周内三次刷新世界纪录,充分彰显了“天合速度”在前沿创新技术上的强大动能与领先力。伴随着技术成果的不断涌现,天合光能也在行业重要舞台上分
6月11日,在第18届(2025)国际太阳能光伏展(SNEC)上,隆基正式发布其全新研发的HIBC技术及量产组件产品。HIBC开创行业先河,首次依托2382mmX1134mm黄金尺寸实现功率700W#x2B;,量产组件效率更是逼近26%,全面引领光伏组件效率迈入“25%#x2B;时代”。HIBC重磅发布nbsp;带来“高价值与可靠性”更优解H
6月10日,晶科能源联合鉴衡认证中心、TVNORD集团等权威机构正式发布《TOPCon技术及TigerNeo3.0商业方案白皮书》。这是一份光伏行业系统性梳理TOPCon工艺路径与产品性能结构的权威报告,全面展现了TOPCon技术平台的先进性与晶科TigerNeo3.0组件的技术集成成果。在PERC效率逼近理论极限的时代背景下,TOP
近日,中来股份再次展现其技术创新能力,其自主研发的TOPCon电池成功通过国家光伏产业计量测试中心(NPVM)的严格测试,获得了-0.2557%/#x2103;的最大功率温度系数认证。这一突破性成果不仅标志着中来股份在高效光伏技术上的重大飞跃,也预示着太阳能发电效率与稳定性的全新里程碑。测试结果显示,中来
6月10-13日,2025年SNEC将在上海国家会展中心如约而至。此前的5月26日,世界“太阳能之父”马丁格林教授团队发布了最新一期的《太阳能电池效率表》(SolarCellEfficiencyTables,Version66)。该报告收录了截至2025年全球太阳能电池技术的最新效率数据,再次成为行业技术发展的风向标。其中,隆基BC技术
2021年12月,内蒙古通辽市某光伏大棚项目在暴雪后不同程度坍塌;2023年3月,江苏溧阳某光伏廊道项目建成不到半年便发生坍塌;同年6月,西班牙毕尔巴鄂暴雨过后,安装了大量光伏板的市体育中心屋顶垮塌#x2026;#x2026;一组组触目惊心的安全事故,暴露出传统光伏组件在轻型屋顶面临的困局。当行业还在低载
据港交所5月29日披露,江苏日御光伏新材料股份有限公司(简称:日御股份)向港交所主板递交上市申请,国泰君安国际为其独家保荐人。招股书显示,日御股份是中国江苏省无锡市的一家导电银浆料与金属化浆料方案供应商,专注导电光伏银浆制造和供应,产品涵盖PERC、TOPCon、BC、HJT等各类技术路线,其中HPBC
在光伏已经被普及的当下,仍然还有30%以上的屋顶因为荷载原因而无法安装光伏电站,它们满心期待绿色转型,但因加固成本高而被迫放弃,最终影响“双碳”事业的进程。5月29日,隆基绿能重磅发布Hi-MOX10轻质双防组件,专为老旧厂房、轻量化彩钢瓦、网架结构等低载荷屋顶而研发,以“更轻、更省、更安心”
2025年6月12日,上海SNEC展会期间,一道新能携手大唐云南发电有限公司(以下简称“大唐云南公司”)签署战略合作协议。大唐云南发电有限公司党委委员、副总经理徐韬,高级顾问高俊礁,办公室主任王牛文,大唐云南李仙江水电公司党委副书记、总经理黄海涛,大唐云南发电有限公司投资发展部负责人王彦秋
四年过去了,宁德时代与中创新航的专利纠纷仍未平息。就在不久前,宁德时代一起“不正当竞争纠纷”案件落锤,矛头再次指向中创新航。6月10日,湖南省长沙市中级人民法院披露了宁德时代与中创新航等不正当竞争纠纷一案的判决书。公告显示,中创新航科技集团股份有限公司于2022年7月27日在其官方微信公众
2025年6月11日,备受瞩目的第十八届SNEC(2025)太阳能光伏与智慧能源大会暨展览会在上海国家会展中心盛大开幕。作为N型电池领跑者,捷泰科技携旗下“MoNo”系列明星产品矩阵及多项前沿技术成果如约亮相6.2H-D630展台,全方位展现公司在高效光伏电池领域的技术深度与战略布局。SNEC2025:全球光伏创新风
6月12日,在万众瞩目的2025SNEC国际太阳能光伏与智慧能源大会现场,隆基绿能宣布两项颠覆性技术突破:经美国国家可再生能源实验室(NREL)权威认证,其自主研发的大面积(260.9cm#xB2;)晶硅-钙钛矿两端叠层太阳电池转换效率达33%,刷新全球大面积叠层电池效率纪录;同时,BC电池组件效率突破26%,再度
6月4日,据全国企业破产重整案件信息网显示,东营光伏新能源开发有限公司被东营光伏太阳能有限公司管理人向山东省东营市中级人民法院申请破产,案号为(2025)鲁05破4号。天眼查显示,东营光伏新能源开发有限公司成立于2014年5月,注册资本为5000万人民币,该公司由东营区国资运营集团控股,2025年4月3
近日,中来股份再次展现其技术创新能力,其自主研发的TOPCon电池成功通过国家光伏产业计量测试中心(NPVM)的严格测试,获得了-0.2557%/#x2103;的最大功率温度系数认证。这一突破性成果不仅标志着中来股份在高效光伏技术上的重大飞跃,也预示着太阳能发电效率与稳定性的全新里程碑。测试结果显示,中来
天合光能今日宣布,其光伏科学与技术全国重点实验室自主研发的大面积钙钛矿/晶体硅叠层组件在转换效率方面取得重大突破,经德国夫琅禾费太阳能研究所(FraunhoferISE)独立测试认证,面积为1185cm²的实验室叠层组件效率达到30.6%,成为全球首个实现叠层组件效率突破30%大关的光伏企业。该成果已正式收
6月5日,聆达股份董事会收到公司董事、董事长、总裁王明圣先生的书面辞职报告。王明圣先生因个人原因,申请辞去公司第六届董事会董事、董事长、总裁及公司董事会战略委员会委员(召集人)、董事会薪酬与考核委员会委员职务。辞职后,王明圣先生将不在公司及公司子公司担任任何职务。同日,聆达股份召开
6月2日,棒杰股份披露披露公告称,公司控股股东、实际控制人陶建伟及一致行动人陶士青、公司持股5%以上股东苏州青嵩企业管理合伙企业(有限合伙)(以下简称“苏州青嵩”)与上海启烁睿行企业管理合伙企业(有限合伙)签署了《股份转让协议》。根据该协议,陶建伟及一致行动人陶士青、苏州青嵩合计向上
景春梅金爱伟谢笑梅(中国国际经济交流中心课题组)2024年12月召开的中央经济工作会议指出,要“综合整治‘内卷式’”竞争。近两年来,我国光伏制造业阶段性供需失衡,“量增价减”问题加剧,出现“内卷式”竞争。光伏制造业是我国培育的重要新质生产力,长期看仍有较大发展空间。在推动光伏制造业重回
6月3日,中节能太阳能股份有限公司2025-2027年度电池片合格供应商入围征集中标候选人公示。公告显示,候选入围单位为安徽旭合新能源科技有限公司、意诚新能(苏州)科技有限公司、温州市双禾新能源有限公司、中润新能源(滁州)有限公司、弘元新材料(徐州)有限公司、常州臣佑光伏科技有限公司、江苏
2025年6月12日,上海SNEC展会期间,一道新能携手大唐云南发电有限公司(以下简称“大唐云南公司”)签署战略合作协议。大唐云南发电有限公司党委委员、副总经理徐韬,高级顾问高俊礁,办公室主任王牛文,大唐云南李仙江水电公司党委副书记、总经理黄海涛,大唐云南发电有限公司投资发展部负责人王彦秋
近日,在SNEC第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会期间,全球太阳电池领域权威专家、被誉为“太阳电池之父”的澳大利亚新南威尔士大学(UNSW)马丁・格林教授率领科研团队莅临一道新能展台。一道新能董事长、总裁刘勇先生、首席技术官宋登元博士全程陪同,双方围绕一道新能的最新N型
6月11日,第18届国际太阳能光伏与智慧能源(上海)展览会(SNEC)隆重开幕,通威携光伏产业链精彩亮相。展会首日,在通威展台上成功举行了合作签约、权威颁证、主题演讲等精彩活动,通威新一代TNC2.0全场景产品矩阵亮相,吸引众多参展客商、观众了解通威光伏产业链发展实力和创新产品。同时,近50家权
2025年6月13日,第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC2025)在上海国家会展中心圆满落幕。作为全球最具影响力的光伏行业盛会,本次展会吸引了来自全球的光伏企业、行业专家及产业链上下游精英。中来股份以智动新生,质行臻远为主题,携三大业务单元全阵容惊艳亮相,其中中来应
6月11日,第十八届国际太阳能光伏与储能技术与装备大会暨展览会(SNEC2025)在上海盛大开幕。本次SNEC展会共计投入14个展馆、总面积达到38万平,参展企业多达3000余家,是全球最大的光伏储能展会,致力于搭建国际化、专业化、规模化的国际合作和交流展示平台。作为新能源变流高端装备制造商和系统解决
在全球能源转型的浪潮下,光伏产业正加速迈向高效化、智能化与多元化。6月12日,在全球光伏盛会SNEC2025国际太阳能光伏展上,华晟新能源与TÜV莱茵正式携手,共同举办了主题为“光伏新维度——垂直组件性能与价值评估解决方案签约启动仪式”的活动。华晟副总裁李鹏凯与TÜV莱茵大中华区太阳能与商业产
6月11日,第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会在上海国家会展中心隆重启幕。中环新能源控股集团(01735.HK)旗下中环低碳新能源(安徽)集团有限公司携零碳综合能源解决方案、光伏电站全流程数智化解决方案、光储充一体化解决方案、双子星C-STAR系列光伏电池产品及环曦ENSOL
在全球光伏产业蓬勃发展的浪潮中,2025年SNEC国际太阳能光伏与智慧能源大会暨展览会,无疑是一场备受瞩目的行业盛会。中来股份怀揣着对质量的执着坚守,荣耀亮相此次展会。6月12日,在以“质行臻远“为主题的展会活动现场,中来股份获得了多家国际权威机构颁发的认证证书,并展示分享了多项创新型技术
6月11日,由林洋能源冠名的“林洋之夜”SNEC2025Reception在上海国家会展中心NH馆盛大举行。活动汇聚了来自全球光伏、储能领域的顶尖专家、企业代表及行业领袖,共同探讨能源变革趋势与合作机遇。林洋能源副董事长、总经理陆丹青女士出席活动并发表致辞。林洋能源副董事长、总经理陆丹青女士在致辞中回
6月12日,在万众瞩目的2025SNEC国际太阳能光伏与智慧能源大会现场,隆基绿能宣布两项颠覆性技术突破:经美国国家可再生能源实验室(NREL)权威认证,其自主研发的大面积(260.9cm#xB2;)晶硅-钙钛矿两端叠层太阳电池转换效率达33%,刷新全球大面积叠层电池效率纪录;同时,BC电池组件效率突破26%,再度
2025SNEC首日——创新篇2025SNEC2025年6月11日,第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(SNEC展会)今日在上海国家会展中心盛大开幕。中来股份以“智动新生,质行臻远”为主题,携多项创新产品和技术精彩亮相,向全球展示了其在光伏领域的创新实力与最新成就,吸引了众多行业内外人士
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!