登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
【成果简介】
基于电容的测量技术被广泛的应用于检测卤化物钙钛矿太阳能电池的各项电学参数,包括缺陷激活能和浓度,载流子浓度,和介电常数。这些参数为检测钙钛矿电池的器件性能提供了重要的信息。
(来源:微信公众号“能源学人”ID:energist)
最近美国托莱多大学(The University of Toledo)的鄢炎发教授和台湾国立成功大学的李剑教授团队合作发表了关于电荷传输层对卤化物钙钛矿太阳能电池电容测量的影响研究。该文发表在最近在Cell Press旗下的能源旗舰期刊Joule 上,题为“Influences of Charge Transport Layers on Capacitance Measured inHalide Perovskite Solar Cells”的研究论文。该研究发现因为高频电容信号会受到空穴传输层(HTL)的载流子的影响,基于电容的测量不能被用于可靠地分析钙钛矿层或其界面的缺陷特性。对于无空穴传输层(HTL-free)的钙钛矿电池,因为钙钛矿层不存在载流子的束缚和激发,高频电容可以被认为是器件的几何电容,因此可以用于计算钙钛矿层的介电常数。低频的电容信号可以用于计算钙钛矿层离子电导的激活能,但需要排除电荷传输层对测量的影响。
这些结论是基于对大量的具有不用的电子和空穴传输层的n-i-p和p-i-n结构的钙钛矿电池的电容-频率-温度(C–ω–T)谱和电容-电压(C–V)测量得到的。热导纳谱包含两个电容特征值,包括在低温(120 – 220 K)和高频(~105Hz)下观测到的D1信号和在相对高温(>220 K)和低频(~105Hz)下观测到的D2信号。电容-电压测量得到的Mott-Schottkyplot可以用于介电常数的测量。表格1总结了对不同结构的钙钛矿电池的热导纳谱测量结果。
高频(D1)和低频(D2)电容特性的激活能和钙钛矿层介电常数的总结。“-“表示导纳谱-ωdC/dω vs. ω分析没有特征峰。下划线表示测量的介电常数来源于电荷传输层而非钙钛矿。
低温高频电容信号(D1)
平面n-i-p型器件
研究团队首先测量了n-i-p结构的包含不同厚度的spiro-OMeTAD的钙钛矿电池。对于包含100纳米spiro-OMeTAD的n-i-p型钙钛矿电池(器件1),在120到220K温度,101– 105Hz频率范围内观测到了10-8– 10-7F/cm2高频电容信号(D1),和文献报道吻合。这些电容信号曾被用于分析钙钛矿电池中的缺陷。这样的分析是基于热导纳谱分析中基于p-n节的假设,即认为ETL和钙钛矿界面存在一个空间电荷层(SCR)。然而,无HTL的电池(器件4)展现出完全不同的电容特征。有在无HTL的器件中并没有观测到D1电容特征,说明D1电容特征源于spiro-OMeTAD而不是钙钛矿。这个特征在10纳米的spiro-OMeTAD(器件3)和无钙钛矿的仅由ETL/HTL的器件中(器件5)得到了证实。另外,无HTL的电池的高频特性不因温度改变而改变,说明钙钛矿层内耗尽层宽度,载流子在缺陷能级上的束缚和激发都不因温度改变而改变。该结果与开尔文探针原子力显微镜(KPFM)测量结果一至,即节电场只存在于钙钛矿与ETL/HTL的界面而不存在于钙钛矿内部。在界面处形成的电场可能是由于钙钛矿表面极化造成的。界面极化电场可以对电容测量起到屏蔽作用。这些结果都表明钙钛矿在高频交流测量中显现出绝缘体特性。
具有不同器件结构的钙钛矿电池的热导纳谱测量结果。(A)包含100纳米的spiro-OMeTAD空穴传输层的n-i-p型钙钛矿电池(器件1),(B)无空穴传输层的n-i型钙钛矿电池(器件4),(C)包含10纳米的spiro-OMeTAD空穴传输层的n-i-p型钙钛矿电池(器件3),(D)无钙钛矿层的n-p型器件(器件5),
进一步的分析表明D1高频电容特征源于spiro-OMeTAD中Li盐和Co盐的参杂。杂质的激活能可以通过对热导纳谱的分析(-ωdC/dω vs. ω)得到。通过对Arrhenius plots的分析,完整结构的n-i-p电池和无钙钛矿层的器件里D1电容特征的激活能分别为0.166 ± 0.005 and 0.172 ± 0.005 eV。这个激活能决定了spiro-OMeTAD的电学传输特性。在不同的偏压下测量得到的D1电容特征的激活能保持不变,说明D1特征源于spiro-OMeTAD内载流子的束缚和激发,与界面缺陷无关。
D1电容特征和其激活能。(A) n-i-p 和(B) n-p 型器件的-ωdC/dω vs. ω热导纳谱分析。(C)通过对ln(ωpeak/T2) vs.1/kBT曲线分析激活能。(D)不同偏压下的D1激活能测量值。
反式结构电池
在对含有PEDOT:PSS的反式p-i-n结构的钙钛矿电池的导纳谱测量中也能观测得到高频D1电容特征。在无PEDOT:PSS的(i-n)器件中并没有观测到D1电容特征,说明D1特征源自PEDOT:PSS。通过计算得到p-i-n和i-n器件对应的D1电容特征的激活能分别为0.019 ± 0.001 eV 和0.016 ± 0.001 eV,该激活能相比spiro-OMeTAD小一个数量级。在以PTAA作为HTL的p-i-n结构的电池中也没有观测到D1特征电容。这可能是由于较小的PTAA厚度,使得PTAA层完全耗尽而不存在电荷的束缚和激活。
反式结构电池的电容特征,包括:(A) p-i-n结构电池(器件12),(B)无钙钛矿层的p-n结构器件(器件13)。(C)和(D)为相对应的-ωdC/dω谱的分析。
介电常数
无HTL的器件可以用于测量和计算钙钛矿层的介电常数。测量记过表明卤化物钙钛矿层的介电常数大约为33。对于无钙钛矿只有电荷传输层的器件(n-p),其计算所得的HTL的介电常数随温度的变化与正常的n-i-p电池一至。因为说明介电常数测量需要排除HTL带来的影响。
通过不同电池结构测量到的介电常数,包括(A)包含不用HTL厚度的n-i-p型器件和(B)不含有钙钛矿层的n-p结构器件。
高温低频电容信号(D2)
平面n-i-p型器件
在低频(ω < 103Hz),高温(240-300K)条件下观测到的约为10-7F/cm2to < 10-5F/cm2的电容信号,与文献报道一至。然而,对热导纳谱的-ωdC/dω vs. ω分析并没有发现存在特征峰值。该结果说明其电容特征值是分散的,因此低频信号不能作为缺陷能级上电荷束缚和激活的标志。再者,分析发现SnO2and spiro-OMeTAD会影响D2信号的测量结果。因此,平面n-i-p结构电池中D2电容信号的激活能不能使用常规的方法测量。
反式结构电池
有趣的是,对于反式p-i-n结构的电池, ETL和HTL并不会影响低频电容的测量。使用不同的HTL的器件的D2电容特征的激活能大约为0.36到0.37eV。低频D2电容信号被认为是钙钛矿层的电学传输性能的表现,即离子迁移。由于离子弛豫,钙钛矿层在高频下表现出绝缘体特性,但在低频下表现出离子导电性。通过测量并计算离子弛豫频率而得到的离子导电性的激活能为0.408 eV,与导纳谱测量得到的D2的激活能(0.36eV)相差不大。
钙钛矿的离子导电性。(A)离子导电率随温度的变化。(B)离子导电的激活能计算。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
11月20日,2024第九届国际(三亚)铝产业链绿色发展高峰论坛开幕式在海南省三亚举行。开幕式上还举行了滨州市铝产业重大投资合作项目签约仪式,20个项目签约,总签约金额157.4亿元。其中,中尽国际控股集团有限公司3GW钙钛矿太阳能电池生产线项目签约邹平市。此前,桓台县商务局组织召开鑫兰德100MW钙
从南京大学获悉,近日,南京大学现代工程与应用科学学院谭海仁教授课题组在全钙钛矿叠层太阳电池领域取得新突破。经国际第三方权威认证机构测试,面积为1.05cm的全钙钛矿叠层太阳电池稳态光电转换效率高达28.2%,刷新了该尺度全钙钛矿叠层太阳电池的世界纪录效率,进一步推动了全钙钛矿叠层太阳电池的
近年来钙钛矿材料在光伏领域的潜力不断被人们发掘,单结钙钛矿太阳能电池效率屡创新高。为进一步提高光电转化效率,研究者进一步制备了一系列基于宽带隙钙钛矿的叠层太阳能电池,比如钙钛矿/硅叠层太阳能电池,钙钛矿/钙钛矿叠层太阳能电池等。相较于其他种类的叠层太阳能电池,钙钛矿/有机叠层太阳能
10月10日,位于重庆市江津区白沙工业园的年产3GW钙钛矿太阳能电池组件西南基地项目正式开工。据介绍,这是我国西南地区最大的钙钛矿太阳能电池生产基地,将助力江津区打造千亿级新能源光伏产业园。该项目由无锡众能光储科技有限公司投资建设,中建二局承建,占地260亩,总投资50亿元,分为2期,将建设3
9月11日,2024江苏产学研合作对接大会在南京国际展览中心盛大开幕。其中包括,上海交通大学与黎元新能源的“100MW钙钛矿太阳能电池”作为产学研合作重大项目在“培育新质生产力服务产业创新园区”研讨会上现场签约。
近日,隆基绿能科技股份有限公司(以下简称“隆基绿能”)作为第一单位在《Nature》期刊在线发表了题为“Perovskite-silicontandemsolarcellswithbilayerinterfacepassivation”的研究论文,公开报道了通过研制晶硅-钙钛矿双结叠层电池突破单结太阳电池效率极限的研究成果。双结叠层太阳电池在光电转换
8月27日,以“深化产业协作共享开放机遇”为主题的投资中国·2024沿边临港地区承接产业转移暨国家级经开区协同发展对接会在昆明开幕。华彩光能(科技)云南有限公司的钙钛矿型太阳能电池项目与昆明经开区(自贸试验区昆明片区)管委会正式签署投资,华彩光能总经理刘军生参与招商引资项目集中签约仪式
8月31日,甘肃电力科学研究院与大唐甘肃发电有限公司新能源分公司合作开展的钙钛矿太阳能电池示范应用项目在大唐甘肃发电有限公司武威太阳能科技示范电站并网,这是半透明钙钛矿太阳能电池在全国首次实现并网发电。该项目并网后,将源源不断地为电网输送清洁电能,助力缓解能源供应压力,减少碳排放,
8月26日,衢州市发展和改革委员会关于对市八届人大四次会议第145号建议的答复,根据衢州市发展需要和光伏产业链补强延,聚焦新一代光伏技术领域项目招引,强化先进、优质项目对产业链的支撑和引领作用,推动包含钙钛矿太阳能电池技术在内的新一代光伏技术企业与本土企业的产销对接,充分利用衢州光伏产
2024年8月13日,异质结电池技术增效降本专题会暨异质结技术产业化协同创新平台一周年技术会议在安徽宣城顺利召开。会议由异质结技术产业化协同创新平台秘书长、安徽华晟新能源科技股份有限公司叠层技术总监周肃主持,异质结光伏产业上下游企业汇聚于此,共同探讨异质结技术降本增效路径与可持续发展的
2024年8月14日,由中国光伏行业协会、宣城市人民政府主办的“2024异质结与钙钛矿太阳能电池技术产业化研讨会”在安徽宣城成功举办。本次会议邀请了多位行业专家、十多家行业骨干企业负责人,从技术发展趋势、市场供需等多方面进行深入沟通交流,共同探讨光伏行业健康有序发展的新路径。会议吸引了大批
11月20日,2024第九届国际(三亚)铝产业链绿色发展高峰论坛开幕式在海南省三亚举行。开幕式上还举行了滨州市铝产业重大投资合作项目签约仪式,20个项目签约,总签约金额157.4亿元。其中,中尽国际控股集团有限公司3GW钙钛矿太阳能电池生产线项目签约邹平市。此前,桓台县商务局组织召开鑫兰德100MW钙
沙特阿拉伯的光伏和智能基础设施控股公司DesertTechnologies与沙特工业城市与技术区管理局(Modon)达成合作,计划在沙特建立5GW的太阳能电池和组件生产能力。该计划将在Jeddah的第三工业城建立一个大型光伏制造园区,规划包括2GW的太阳能组件和3GW的太阳能电池产能。Modon将为该光伏生产基地提供17万
11月1日,钧达股份发布公告,为进一步推进公司阿曼年产5GW高效电池生产基地项目建设,根据董事会授权,公司阿曼项目投资运营管理主体JIETAINEWENERGYTECHNOLOGYOM(FZC)SPC(捷泰新能源科技(阿曼)苏哈尔自贸区有限责任公司)与SOHARFREEZONELLC(苏哈尔自由贸易区有限公司)于近日签署《土地租赁合同
10月31日,麦迪科技公布2024年三季报显示,前三季度公司实现营业收入3.6亿元,同比增长2.9%;完成归母净利润-1.67亿元,同比下降81.6%。其中,第三季度公司收入1.04亿元,同比下降47.1%;归母净利润-9089万元,同比下降165.2%。对于影响业绩的主要原因,麦迪科技表示,由于光伏行业竞争加剧,产业供给
由北京、天津、河北三省市联合举办的2024京津冀产业链供应链大会于10月24日至25日在国家会展中心(天津)举办。京津冀产业链供应链重点项目签约仪式上,咸水沽镇人民政府与巨光东来新能源有限公司就第三代(砷化镓)光伏发电系统及钠离子电池产业化项目进行签约。砷化镓是光电及通信领域不可或缺的原材
10月24日,ST聆达发布三季度业绩公告。根据公告显示,ST聆达前三季度实现营收0.49亿元,同比下降93.67%;归母净利润亏损5.7亿元,同比下降6,898.73%;扣非净利润亏损4.82亿元,同比下降32,795.52%。其中,今年第三季度ST聆达实现营收0.14亿元,同比下降94.89%;归母净利润亏损4.02亿元,同比下降3,556.
10月23日,永和智控发布公告称,公司与国晟旭升指定的第三方凡荣实业签署了《关于普乐新能源科技(泰兴)有限公司股权收购及债权转让协议》,公司拟将持有的泰兴普乐51%股权及公司对泰兴普乐的全部债权以6140万元交易对价转让给凡荣实业。本次股权转让完成后,公司将不再持有泰兴普乐股权,泰兴普乐不
前三季度,在以习近平同志为核心的党中央坚强领导下,全省坚决贯彻落实党中央、国务院决策部署和省委、省政府工作要求,坚持稳中求进工作总基调,锚定“3815”战略发展目标,一体推进资源经济、园区经济、口岸经济协同发展,坚定不移推进市场化、产业化、法治化、生态化、数字化进程,难中求进、干中求
10月21日消息,钧达股份发布公告称,近日收到公司独立董事赵航先生、杨友隽先生的书面辞职报告。独立董事赵航先生、杨友隽先生在公司任期已届满六年,根据《上市公司独立董事管理办法》《公司章程》等相关规定,赵航先生申请辞去第四届董事会独立董事、战略委员会委员职务;杨友隽先生申请辞去第四届董
10月20日,位于天合光能的光伏科学与技术全国重点实验室宣布,其自主研发的高效N型i-TOPCon电池,经德国哈梅林太阳能研究所(ISFH)下属的检测实验室认证,最高电池效率达到25.9%,创造了大面积产业化n型单晶硅TOPCon电池效率新的世界纪录,这是天合光能第27次创造和刷新世界纪录。天合光能这一突破世
从南京大学获悉,近日,南京大学现代工程与应用科学学院谭海仁教授课题组在全钙钛矿叠层太阳电池领域取得新突破。经国际第三方权威认证机构测试,面积为1.05cm的全钙钛矿叠层太阳电池稳态光电转换效率高达28.2%,刷新了该尺度全钙钛矿叠层太阳电池的世界纪录效率,进一步推动了全钙钛矿叠层太阳电池的
当地时间11月13-15日,2024年亚太经合组织(APEC)工商领导人峰会在秘鲁首都利马举行。作为中国光伏唯一发言的企业代表,隆基绿能创始人、总裁李振国出席峰会,并于当地时间11月14日与铜矿开发公司Freeport-McMoRan公司董事长RichardAdkerson和爆破服务解决方案公司Enaex公司首席执行官JuanAndrésErráz
2024年10月15日,东方日升重磅推出了异质结伏曦组件的升级产品伏曦Pro,并公告了这款产品的730Wp#x2B;的量产功率。不同于现在行业里大家能够看到的各种效率、功率的世界纪录或者是实验室数据,这次东方日升强调的是“量产功率”。730Wp#x2B;量产功率达成的背后离不开电池效率的提升和一些新材料和封装
当地时间10月29-30日,哥伦比亚未来能源峰会(FutureEnergySummitColombia)正式召开,正泰新能受邀出席,拉丁美洲销售总监CamiloNavarrete参加了题为“ConstructiveInnovationandTechnicalDevelopmentasAlliesintheEnergySectorCompetitionintheAndeanRegion”的主题研讨会。哥伦比亚未来能源峰会旨在
在全球光伏产业的技术革新浪潮中,东方日升凭借在异质结(HJT)电池领域的多年深耕和创新能力始终走在行业前列。10月15日,公司向整个行业发布了730Wp+伏曦Pro的量产公告,也宣布了行业里光伏组件产品中单块组件量产功率最高产品的首次达成。730Wp+量产功率达成的背后离不开电池效率的提升和一些新材料
近日,“2024碳中和与绿色发展大会”在中国·北京顺利举办,一道新能研发中心高级经理刘汪利先生发表《一道迈向绿色未来:N型光伏技术创新与生态发展》主题演讲,向与会来宾分享了一道新能的碳中和理念与实践。本届大会由中国检验认证(集团)有限公司和中国消费品质量安全促进会指导,中国质量认证中
光伏电池钝化效果越好,电池效率越容易受到紫外波段光线的影响为了获得更高的太阳电池转换效率,电池表面钝化是一个非常重要和关键的步骤。由于较高的体复合速度和表面复合速度会限制电池的开路电压,同时也会降低电池的填充因子FF,所以通过采用高质量的表面钝化层来抑制表面复合,成为获得高效率太阳
近日,龙源电力天津海晶盐光互补项目“滨海盐光互补发电系统关键技术与应用”成果通过中国电力建设企业协会鉴定,达到国际领先水平。该项目攻克了高盐雾地区光伏项目在容量配置、质量控制、安全管理、智能运维等方面痛点与难点,实现了盐光互补光伏项目经济、安全、稳定、高效运行,为京津冀区域光伏产
10月11日,华能嘉峪关3万千瓦高效异质结电池组件实证平台成功并网,标志着华能首个规模化先进光伏技术实证示范应用基地正式投产,将有力助推先进光伏技术产业化发展,为光伏行业降本增效和设备选型提供有力支撑。该基地由华能清能院提供技术支持,华能甘肃公司投资建设,占地面积约1000亩,集生产试验
天眼查显示,9月29日华清钙钛矿光伏技术(北京)有限公司成立,公司控股股东为中国华能集团清洁能源技术研究院有限公司,注册资本为10997万人民币。中国华能集团是国内早期进入钙钛矿领域的企业之一,早在2015年,华能即开始进行相关技术研发,并在2018年将实验室级小面积钙钛矿电池的认证效率提升至22
9月23日,住房城乡建设部办公厅关于行业标准《建筑用太阳能光伏系统支架通用技术要求(修订征求意见稿)》公开征求意见的通知,意见反馈截止时间为2024年10月25日。原文如下:住房城乡建设部办公厅关于行业标准《建筑用太阳能光伏系统支架通用技术要求(修订征求意见稿)》公开征求意见的通知根据《住
2024年9月25日,由中国光伏行业协会主办的“光储融合高质量发展论坛”成功举办。会议由中国光伏行业协会国际合作部主任茹佳林主持,电力规划设计总院新能源科技创新研究院院长助理董博、华北电力大学郑华教授、中国石化集团新星石油公司氢能管理部经理李瑞霞、中国能建杭州华源前线能源设备有限公司副
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!