登录注册
请使用微信扫一扫
关注公众号完成登录
图注:简单的P-n节插图;
太阳能电池是使用p型和n型硅晶圆制成的。p型硅晶片由更多的孔组成,这意味着它缺少电子,而n型晶片具有过量的电子。两者接触的界面称为结(更准确地说是PN结)。PN结是太阳能电池的主要组成部分。
我们所说的太阳能电池效率是什么意思?
我们使用的每个设备都具有一定的效率。考虑一台每小时可生产10个气球的机器。在这十个气球中,有两个气球有孔或其他类型的缺陷。这意味着该机器的效率为80%,因为该机器吸收了生产10个气球所需的原材料,但仅将其中的80%转换为有用的输出。因此,设备的效率代表了提供给它的每单位输入所产生的有用输出量。
类似地,太阳能电池上的入射辐射不会完全转换为电能。只能获取该能量的一小部分(如我们已经看到的小得多)作为有用的工作。有许多不同的衡量太阳能电池效率的方法,但最普遍的方法是肖克利-奎塞尔极限。
什么是肖克利-奎塞尔极限?
肖克利-奎塞尔极限(通常称为SQ极限)是提高太阳能电池效率的最重要科学手段。它测量标准测试条件(STC)下单个PN结太阳能电池的理论效率。STC近似于美国大陆春季和秋季春分时的太阳正午,太阳能电池的表面直接对准太阳(太阳能效率极限)。
该限制是在某些假设下测得的,太阳能电池必须仅由一种均质材料制成,每个太阳能电池只能有一个p-n结,并且假定每个能量大于带隙的光子都将转换为电能。如果您不了解光子或带隙的含义,请不要担心,我们将在下面进行讨论。
为什么效率受到限制?
使用太阳能电池发电的过程主要取决于一个非常重要的步骤。电子从价带(太阳能电池的PN结)跃迁到导带(外部电路,例如电池)。供您参考,正常原子中没有外部能量的电子被称为在价带中。为了产生电,这些电子必须转移到外部电路,这被称为导带。
图注:不同材料间的能带隙。
电子本身不会从价带跃迁到导带。 必须提供一定量的能量(称为带隙),以使它们进行过渡。
现在,入射的太阳辐射由许多不同波长的波组成,如上面的光谱所示。左侧的长波最弱(能量较少),而右侧的短波更强大。因此,这些波中只有少数具有必要的能量来克服能垒。
图注:光波带谱。
让我们看一个例子,以更好地了解上述过程。考虑一包由100个不同波长的光子组成的光子(光子)撞击由硅制成的太阳能电池。在这100个波中,有40个波具有相当于硅带隙的能量,因此将能够发电。其余的波将作为热量消散或从电池表面反射回来。因此,太阳能电池的效率受到限制。
还有其他影响效率的因素吗?
正如我们所看到的,电子跃迁的阈值能垒原来是太阳能电池板效率低的主要原因。但是,它不是影响它的唯一因素。还有许多其他元素在这里起着相当重要的作用。
图注:臭氧层阻止高能紫外线到达地表。
离开太阳的能量与我们在地球上接收到的能量不同。这是因为辐射必须穿过包围我们星球的浓厚大气传播。现在,诸如光的散射和折射之类的不同现象降低了其强度。臭氧层会阻止有害的紫外线辐射到达我们(这些波对我们有害,因为它们拥有更多的能量,因此会损坏我们的眼睛细胞)。 然而,这些是能够越过阈值能量的波,但却稀疏地到达表面,从而再次导致太阳能电池板的效率降低。
有什么解决办法吗?
即使目前我们可以买到的大多数商用太阳能电池的转换率都无法超过33%的标准,但未来的前景似乎一片光明。剑桥大学致力于钙钛矿材料用于柔性LED和下一代太阳能电池的研究人员发现,当它们的化学成分顺序较少(从本文范围外的东西)时,它们的效率会更高,从而大大简化了生产生产过程,并且降低成本。
同样,世界各地的科学家一直在研究更新的材料,例如氮化镓,锗,磷化铟等。许多人认为,这些材料将通过改变多结太阳能电池的带隙极限,有效地利用整个太阳光谱将其转化为电能。总而言之,太阳能行业的未来确实是光明的。
总结
澳大利亚和亚马逊的森林大火已经向大气释放了惊人数量的碳,以至于我们的星球可能要到2050年才能吸收它。这已成为了现实,否认它是没有用的。环保主义者已经竭尽全力告诉世界绿色能源是前进的唯一途径,但一些领导人仍然对事实持怀疑态度。
人们普遍认为太阳能电池效率较低是不将其用作化石燃料替代品的原因。但是,问题在于跨国公司和政府继续在石油和煤基能源生产的研究和开发中投入大量资金,而忽略了对绿色和安全替代品的研究和改进。例如,已经发现具有较低能带隙的材料可以作为解决当前问题的可能方法,但是我们需要全世界关注和投资于此类研究!
世界需要理解和接受的是,如果我们希望我们的物种得以生存,则只有一条前进的道路可走——绿色和可持续的道路!
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
1月9日,四川省发改委发布了乐山高新区年产10GW高效异质结电池片项目(一期5GW)节能报告的审查意见,原则同意该项目节能报告。根据公告,该项目业主为四川铄阳异质结新能源有限公司,项目位于乐山高新技术产业开发区,分两阶段建设5条N型晶硅电池生产线,年产5GW高效异质结HBC晶硅电池(一阶段2GW、二
印度光伏企业WaareeEnergiesLimited宣布,其位于古吉拉特邦的5.4GW太阳能电池制造工厂已于2025年1月6日开始试生产。WaareeEnergies称,目前公司是印度最大的光伏组件制造商。截至2024年6月30日,公司光伏组件产能达13.3GW,分布在Chikhli、Surat、Tumb、Nandigram的五个制造基地,均位于古吉拉特邦。据
日前,临沂市兰山区人民政府办公室关于印发《兰山区推进钙钛矿太阳能电池产业发展实施方案》的通知,通知指出,到2030年,钙钛矿太阳能电池大面积制备、稳定性、转化率、良品率等关键共性技术难题实现持续突破,具备GW级大规模量产能力。钙钛矿太阳能电池产业布局持续优化,构建形成“材料—设备—电池
近日,位于天合光能的光伏科学与技术全国重点实验室正式宣布其自主研发的高效n型全钝化异质结(HJT)电池,经德国哈梅林太阳能研究所(ISFH)下属的检测实验室认证,最高电池效率达到27.08%,创造了HJT太阳电池效率新的世界纪录,这是天合光能第29次创造和刷新世界纪录,同时也是目前正背面接触结构晶
2024年12月16日,埃及苏伊士——博达新能EliTeSolar埃及项目奠基仪式隆重举行。这一项目的启动不仅是博达新能全球化战略的重要里程碑,也为埃及光伏产业注入先进制造技术,推动本地产业链升级,为2030年实现42%可再生能源目标提供了有力支持。该项目位于中埃泰达苏伊士经贸合作区,占地7.8万平方米,规
近日,一道新能联合三峡集团科学技术研究院共同研发的用于钙钛矿/TOPCon四端叠层组件的底电池和组件技术获得重大突破,搭载一道新能双面TOPCon底电池的钙钛矿/晶硅四端叠层组件完成批量出货,开始应用于三峡能源50MW光伏先进技术发电示范基地,其中双面钙钛矿/TOPCon四端叠层组件电站容量为500kW,项目
印度新能源与可再生能源部(MNRE)宣布,将于2026年6月1日开始执行太阳能光伏电池的《批准型号和制造商名单》(ALMM)List-II,确保列入ALMMList-I的光伏组件必须使用来自ALMMList-II的电池。根据新规,从2026年6月1日起,所有与政府相关的项目需使用列入ALMMList-I的组件,同时这些组件需采用来自ALMM
12月9日,江苏润阳新能源科技股份有限公司(以下简称“润阳股份”)建湖16GWN型高效太阳能电池基地正式复工复产。这是继今年10月份云南曲靖基地复产以来,润阳在国内的又一个先进太阳能电池基地全线开工,标志着润阳在稳生产、提质效、引领先进产能发展的道路上迈出坚实步伐。在当前国内光伏行业阶段性
12月9日,ST聆达发布公告称,公司通过中国证券登记结算有限责任公司深圳分公司查询,控股股东杭州光恒昱企业管理合伙企业(有限合伙)的股份存在新增被冻结情形,冻结股份数量为15,980,000股,占公司总股本的比例为5.97%,冻结起始日为2024年12月5日,冻结到期日为2027年12月4日,冻结法院为福建省厦门
2024年12月4日,美国国际贸易委员会(ITC)投票决定对特定TOPCon太阳能电池、组件、面板、组件和下游产品(II)(CertainTOPconSolarCells,Modules,Panels,ComponentsThereof,andProductsContainingSame(II))启动337调查(调查编码:337-TA-1425)。2024年10月23日,美国TrinaSolar(U.S.),Inc.ofFremont
12月3日,浙江省发改委网站公示年产7GW高效N型单晶TOPCon太阳能电池项目项目节能报告。根据公示信息显示,此项目建设单位为浙江鸿禧能源股份有限公司,项目总投资约22.19亿元,新增用地约83亩,配置扩散炉、管式氧化炉、烧结炉、PECVD镀膜设备等主要生产设备,形成年产7GWN型TOPCon单晶电池生产能力。
近日,隆基绿能与江苏科技大学、澳大利亚科廷大学三方合作,在国际上首次制造出高柔韧性、高功率重量比的晶硅异质结太阳能电池,相关研究成果以“Flexiblesiliconsolarcellswithhighpower-to-weightratios”为题发表在国际期刊《Nature》(自然)上。晶硅太阳能电池是目前最为成熟、应用最广的光伏发电
北极星太阳能光伏网获悉,近期,经权威认证机构德国哈梅林太阳能研究所(ISFH)测试,迈为股份采用低铟含量的TCO工艺结合银包铜栅线,在全尺寸(M6,274.5cm2)单晶硅异质结电池上获得了25.62%的光电转换效率。25.62%的认证效率是此类电池目前的最高纪录,该技术不仅确保了极高的可量产电池效率,而且实
2月24日,经美国国家可再生能源实验室(NREL)测试证实,中国建材凯盛科技集团旗下蚌埠玻璃工业设计研究院所属德国Avancis公司生产的30x30平方厘米铜铟镓硒(CIGS)太阳能电池组件的光电转换效率达到19.64%,再次打破了铜铟镓硒太阳能电池组件光电转换效率的世界纪录,标志着凯盛科技不断突破CIGS薄膜
企查查APP显示,比亚迪(002594)于2021年1月1日,公开一种“光波转换材料及其制备方法和太阳能电池”相关专利,公开号为:CN109988370B,申请时间为2017年12月29日。专利摘要显示:本发明涉及太阳能电池领域,具体涉及光波转换材料及其制备方法和太阳能电池。本发明提供的光波转换材料,能够使得太阳
钙钛矿是一种具有与矿物钙钛氧化物(最早发现的钙钛矿晶体)相同的晶体结构的材料。通常,钙钛矿化合物具有化学式ABX3,其中“A”和“B”代表阳离子,X是与两者键合的阴离子,大量不同的元素可以结合在一起形成钙钛矿结构。利用这种成分的灵活性,科学家可以设计钙钛矿晶体,使其具有多种物理,光学和
最近,英国班戈大学计算机科学与电子工程学院的TudurWynDavid等研究员提出了一种从有机光伏(OPV)太阳能电池数据中提取信息的机器学习方法。在1850个器件特性、性能和稳定性数据条目组成的数据库的基础上,采用顺序最小优化回归(SMOreg)模型,用以推测太阳能电池稳定性和功率转换效率(PCE)的最大影响因
日本冲绳科学技术研究所已开发出兼具高转换效率和稳定性的过氧化物太阳能电池模块。研究人员表示,该模块实现了16.6%的转换效率,即使在经过2000小时的照射后,仍能保持约86%的初始性能。与目前主流的硅基太阳能电池相比,由于其转换效率高、制造成本低,因此超氧化物太阳能电池有望成为下一代太阳能电
近日,香港城市大学新研发的全无机钙钛矿电池的光电转换效率达到16.1%,而获中国计量科学研究院认证的效率亦高达15.6%。香港城市大学学务副校长兼化学及材料科学讲座教授任广禹指出,这次研究成果的突破在于找到了简单方法,用于制造光电转换效率与稳定性兼具的全无机钙钛矿电池。据悉,香港城市大学的
太阳能是绿色环保可持续清洁能源,太阳能光伏发电已成为新兴产业。利用晶硅等无机半导体的传统光伏发电造价昂贵,科学家便把目光转向有机材料太阳能电池领域。如何实现更高的光电转化效率,设计制备新的有机光电材料,需要弄清楚发电的微观过程。近日,南京大学物理学院团队的一项最新成果,揭示了高效
为什么HJT转化效率高?异质结电池结构中,P型非晶硅薄膜拥有更宽的禁带宽度,导致了更高的开路电压。VOC与内建电场的电势差VD正相关。内建电场越强,光生载流子能更有效地分离,载流子复合越小。VD是VOC的上限,VD越高,VOC才有高的可能性。由于内建电场的存在,电子在空间电荷区有附加的电势能,使能
晶硅电池转换效率的理论上限?1954年贝尔实验室的CHAPIN等三人发表了第一篇关于硅太阳电池的文章,在这篇文章中就已指出有反射、复合、电阻三方面的因素使电池的效率低于某个上限。早在1961年,WilliamShockley等人根据细致平衡原理在只考虑辐射复合作为电子-空穴对唯一的复合机制的理想情况下,通过
1月11日,中国能建中电工程云南院与缅甸GoldEnergy(金色能源)公司在缅甸仰光签署了缅甸曼德勒密铁拉1吉瓦光伏发电基地技术服务合同。金色能源董事长吴当凯、云南院总经理王宏出席仪式并见证签约,金色能源总经理杨鸿生与云南院国际事业部主任黄光鑫分别代表双方签署合同,在缅中资企业及当地企业代表约
1月7日,国家能源局发布《第四批能源领域首台(套)重大技术装备的通知》,77项技术装备项目入选。其中,光伏领域包括塔式光热聚光场控制与校准系统、多塔一机塔式光热电站聚光集热系统、沙戈荒基地大型光伏中压直流发电系统、晶硅光伏组件回收高效综合法成套工艺技术及国产化设备、高效降本异质结太阳
1月2日,正泰新能与浙江工业大学能源与碳中和科教融合学院宣布正式共建“研究生实践基地”。双方将围绕人才培养、科研创新、技术攻关等领域展开全方位协作,这一合作标志着双方在人才培养、科技创新、成果转化等领域迈入深度融合的新阶段,为我国新能源技术突破和光伏产业升级注入新的强劲动力。在合作
今年3月,光伏市值“一哥”更迭,逆变器龙头阳光电源超越组件霸主隆基绿能,成为总市值最高的光伏企业。事实上,这也一定程度上反映了今年组件、逆变器两大产业链企业的命运曲线。作为光伏系统的两大核心设备,相比组件企业的大面积“失血”,逆变器企业仍旧保持着“赚钱”态势。普遍盈利聚焦逆变器业
在《2025年光伏产业链供给侧改革持续优化,N型技术继续向纵深化发展》上篇中,TrendForce集邦咨询对2025年全球光伏产业链各环节的产能、产出变化进行了讨论。在下篇中,TrendForce将围绕光伏整体供需格局以及技术趋势分别展开分析。供给侧改革持续优化,推动市场供需逐渐形成动态平衡#x2014;#x2014;202
回顾2024年,光伏产业链产能产量实现高比例增长,供需失衡是2024年产业链价格持续下探的根本原因,企业盈利承压下滑,行业竞争激烈。在此情况下,TrendForce集邦咨询对2025年全球光伏产业链发展情况进行分析,2025年产业链各环节的产能、产出会呈现怎样的变化趋势?整体供需格局将如何发展?光伏技术又
在《战火升级,2025年n型格局恐生变?》一文中,就n型竞争格局展开了讨论。实际上,n型三剑客就晶硅电池主流技术争论不休之时,钙钛矿相关企业也在暗自努力,悄悄惊艳。今年以来,大面积钙钛矿组件效率不断取得突破。前不久,纤纳光电8.6MW钙钛矿地面电站并网,标志着钙钛矿商业化进程已显著加快。资本
近日,一道新能联合三峡集团科学技术研究院共同研发的用于钙钛矿/TOPCon四端叠层组件的底电池和组件技术获得重大突破,搭载一道新能双面TOPCon底电池的钙钛矿/晶硅四端叠层组件完成批量出货,开始应用于三峡能源50MW光伏先进技术发电示范基地,其中双面钙钛矿/TOPCon四端叠层组件电站容量为500kW,项目
11月20日,12thbifiPVWorkshopZhuhai2024国际峰会在珠海正式开幕,爱旭股份首席科学家王永谦博士出席题为“BC技术对未来光伏行业的重大影响”的圆桌论坛。他表示:“BC代表的就是单结晶硅电池最终的技术路线,我认为BC技术是最完美的晶硅电池技术。”爱旭选择BC技术并非偶然。因为晶硅的技术路线一直很
2024年11月,国家太阳能光伏(电)产品质量检验检测中心主办的“卓越质控实验室”评选活动圆满落幕。英利光伏技术实验室凭借在质量控制方面的硬实力与卓越成果,赢得了专家评审组的高度认可,最终斩获金奖。此次评选共有13个实验室进入最终答辩环节,主办方对各实验室的质控课题立项、内部质控活动、管
11月29日,天合光能-复旦大学先进光伏技术校企联合实验室(以下简称“联合实验室”)签约揭牌仪式暨学术研讨会在复旦大学举行,此次联合实验室的成立是双方共建光伏科学与技术全国重点实验室之后又一个重要里程碑。(彭慧胜、陈奕峰代表双方揭牌)复旦大学校党委常委、校长助理、科研院院长彭慧胜院士
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!