登录注册
请使用微信扫一扫
关注公众号完成登录
当前的问题是,哪项技术将成为新一代太阳能技术?
仅采用单一吸收体材料的太阳能电池在提高转换效率方面的潜力非常有限,其效率增益空间主要取决于吸收体的 禁带宽度 。图1所示为热力学(细致平衡)效率极限与禁带的关系曲线。太阳能电池的热力学效率极限也叫肖克利-奎伊瑟(Shockley-Queisser)极限,以首次计算出该极限的两位物理学家命名。
图1:最大理论效率与吸收体禁带宽度的关系
在AM1.5标准光谱下,曲线上的最大值约为33%,对应的禁带宽度为1.1eV或1.4eV。不过,效率峰值分布的范围也比较广。当禁带宽度为0.9-1.7eV时,转换效率也可超过30%。因此,大多数太阳光吸收材料的理论效率极限均较为相近。
晶硅的理论效率极限约为32%。然而,如果稍微偏离理想条件,考虑到(不可避免的)俄歇复合(Auger-Recombination),晶硅的效率极限便会降至29%左右。
2017年,日本钟化集团(Kaneka)开发的一块180cm2太阳能电池创下了26.6%的转换效率世界纪录[2],已经比较接近理论极限。PERC电池(工艺改进)的转换效率记录目前由隆基保持,效率高达24.06%。
未来5到10年内,晶硅太阳能电池将达到25%左右的效率极限。届时,在不影响其成本优势的前提下,电池量产技术将无法再进一步完善,这样晶硅太阳能电池技术就将失去主流技术所需要具备的经济可行性。晶硅电池达到上述极限的过程将相对容易,主要依靠不断降低光学损耗、电阻损耗以及最关键的复合损失。这一过程不需要任何“真正的”颠覆性技术。
那么,光伏行业的效率增益将会就此止步不前吗?会不会所有的改进措施都将依靠进一步降低成本(以及通过冷却等方法提高发电量)?
目前看来,唯一的办法似乎只有突破肖克利-奎伊瑟极限。原则上,有两种方法可以提高太阳能电池的理论效率极限:一是汇聚更多的太阳光;二是采用两种及以上禁带不同的吸收体材料。采用两种吸收体的电池称为“双结叠层电池”,超过两种吸收体的电池叫做“多结叠层电池”。
若要提高单个太阳能组件的发电量,最简单的方法之一就是使组件正反两面都能收集太阳光。相较单面电池组件,双面电池组件能够将光伏系统的发电量提高10-20%,但新增成本却微乎其微。在集中式光伏系统中,双面电池组件已是大势所趋,而且此类电站将是光伏装机项目中的主力军。
因此,在开发一项新的电池技术时,必须评估其与双面技术的兼容性。
聚光电池
首先,我们来看一下聚光电池技术。通过汇聚太阳光,会产生更多的载流子,同时其复合保持不变,这样开路电压就会升高,太阳能电池的转换效率也就随之提高。如图2所示,在理想条件下,电池效率随着辐照强度增强而呈对数增长。理论上来说,如果汇聚的太阳光增强1000倍,太阳能电池效率可提高约25%(相对值),电池效率极限可提高约7%(绝对值)。
图2:不同串联电阻下的电池效率与聚光比的关系
不过,在实际操作中,聚光存在许多限制,如光学损耗至少在15-20%、额外的电阻损耗、温度上升、入射接收角较小、成本高昂等。此外,聚光电池技术与双面技术也不兼容。因此,基于单结电池的聚光光伏系统在性能上不如未采用聚光技术的电池,并且成本还更高。我们不认为聚光电池是突破肖克利-奎伊瑟极限的可行技术。
双结叠层电池
双结叠层电池技术或多结电池技术旨在改善较宽的太阳光谱范围与单一半导体局限的吸收边限不相匹配的问题。图3所示为AM1.5G标准光谱。在禁带宽度为1.12 eV(约1100 nm)的晶硅太阳能电池中,能量较高(即波长较短)的光子全部被吸收,其剩余能量以热能的形式消散于晶格中——这一过程叫做热化。所有能量较低的光子均不被吸收,而是直接进入晶硅吸收体层。这些光子在背接触层被吸收并产生热量,或被反射或穿过组件。
图3:晶硅太阳能电池的光谱吸收和热损耗
图4描述了三结太阳能电池的结构:三种不同的材料串联叠放。禁带较宽的材料位于顶部,可吸收所有能量大于其禁带的光子,其它光子将进入下一层。在这一结构中,禁带较宽的材料所产生的载流子的能量(VOC)将比禁带较窄的材料所产生的载流子要高,因此可有效减少热损耗。添加一层禁带较窄的材料可吸收更多的低能量光子,从而提高产光生电流。
图4:三结太阳能电池及相应的吸光区域
如图5所示,双结叠层电池的理论(细致平衡)效率极限取决于其顶电池和底电池的禁带能量。二者的最佳组合是0.95eV和1.7eV,这时效率最大值可达46%左右。对于底电池材料来说,晶硅是一个非常不错的选择。配以禁带宽度为1.8eV的顶电池,转换效率可达44%左右。另外,双结叠层电池技术与双面电池组件技术相容。根据不同的反射率,晶硅底电池可通过背面额外收集10-20%的太阳光。对于双结叠层电池来说,这意味着顶电池的禁带宽度需要降低,从而使其产生更多的电流,确保顶电池和底电池的电流相匹配。因此,在采用晶硅底电池的双面双结叠层电池中,顶电池的禁带宽度最好降低至1.6eV左右。
图5:双结叠层电池的(细致平衡)效率极限
理论上来说,双结叠层电池技术可以将晶硅太阳能电池的效率提高12%(绝对值)那么,双结叠层电池技术能为量产太阳能电池效率带来又一次飞跃吗?
采用III-V族半导体的双结叠层电池或多结电池已被证明具有超高潜力:其实验室效率已超过46%[5],量产效率约为40%。不过,III-V族半导体技术极其昂贵。其中,仅晶片成本就已经是硅片的200倍以上。因此,只有将太阳光的聚光量提高500倍左右,该技术才具有可行性。总而言之,由于成本过高,III-V族半导体技术目前依然无法与主流晶硅电池技术相抗衡。
长久以来,研发人员一直在寻找合适的吸收体材料来作为顶电池,与晶硅底电池搭配使用。图6显示了与效率为25%的晶硅底电池组合时,顶电池所需要达到的效率。
若要实现接近30%的电池效率,当采用禁带宽度小于1.7eV的材料时,顶电池效率需要达到20%以上。到目前为止,研发人员还未找到合适的材料。碲化镉(CdTe)本来有望成为候选材料,但其禁带过窄,只有1.4eV。非晶硅和铜镓硒(CGS)的禁带宽度在1.7eV左右,比较合适,但其转换效率太低。半导体量子结构不仅不解决问题,还会引发新的问题。
图6:底电池效率不变,顶电池所需达到的效率
目前,顶电池有两种潜在候选材料:III-V族半导体和钙钛矿。
那么,这两种候选材料各有何优劣?
首先,III-V族半导体顶电池可与晶硅底电池配合使用。由于晶格失配和温度收支现象,两种材料无法直接用外延法生长在一起。
目前,III-V族半导体顶电池与晶硅底电池的双结叠层组合已在实验室中达到了32.8%的转换效率[7]。不过,这种电池技术的成本比晶硅电池高出了一个数量级。用外延法生长在锗或砷化镓晶片表面,再进行剥离和转移,似乎是最可行的做法,不过这在技术和经济性方面是否可行,尚有待证明。图7所示为上述结构的截面示意图[8]。
目前,普遍认为该技术在经济性上未达到量产标准。
图7:磷化镓铟/硅基双结叠层太阳能电池的结构示意图[8]
第二个选项是采用钙钛矿太阳能电池作为顶电池。近年来,全球各地的实验室在钙钛矿电池研发方面都取得了重大进展。钙钛矿单结电池的转换效率已超过20%。2018年6月,牛津光伏(Oxford PV)公司成功开发出效率高达27.3%的钙钛矿/硅基双结叠层电池,首次打破了单结晶硅电池26.6%的世界纪录[9]。
钙钛矿是一种前景非常广阔的吸收体材料。它们属于直接带隙半导体,因此其作为太阳能电池的吸收体材料时,厚度只需达到1 μm即可。禁带宽度的调整范围为1.5 eV左右至1.7 eV以上。而且,即便采用低成本沉积技术,也能实现出色的复合特性。其开路电压也正在逐步逼近肖克利-奎伊瑟极限。
钙钛矿太阳能电池在短时间内就能取得如此惊人的进展,着实令人印象深刻,但钙钛矿/硅基双结叠层电池在实现量产之前,还需要克服不少难关。
挑战1
最大的挑战就是如何确保钙钛矿电池的长期稳定性。标准组件可以在恶劣的户外气候条件下耐受25-30年,而钙钛矿在几分钟之内便会退化。不过,这方面目前也已取得显著进展:钙钛矿/硅基双结叠层电池与双玻组件技术相结合,可以通过DH1000或TC200试验[10]。目前,研发人员正在努力提高钙钛矿/硅基双结叠层电池抵抗紫外线辐射、湿气、高温和氧气的能力。
挑战2
第二项挑战在于要将不足1cm2的实验室级电池提升到正常硅片大小。这需要进行大量的工程设计,不过可以借助晶硅电池、薄膜电池及蓄电池生产中成熟的沉积技术,因此该项挑战不至于成为根本性障碍。
挑战3
钙钛矿通常含有铅、铯等剧毒元素。目前,这一点不会影响其在光伏组件中的使用,因为晶硅电池组件的焊带和金属化浆料中也含有铅。不过,未来新的法规也许会限制光伏组件使用有毒材料。如有需要,浆料和焊带中的铅可以轻而易举地找到替代品。但铅是构成钙钛矿的主要元素之一,目前还无法被取代。
钙钛矿/硅基双结叠层电池及组件结构
原则上来说,双结叠层电池组件有两种设计方法。一种方法是采用集成一体化结构:将底电池和顶电池集成在同一个电池片(如图8所示),再按照标准晶硅电池的工艺将双结叠层电池连接起来,形成电池组件。另一种方法是将顶电池和底电池分开,制成两个组件,然后再串联叠放并封装在一起。底电池组件的敷设多多少少有标准可循。顶电池组件可采用薄膜叠瓦技术。这种方法的优点在于顶电池和底电池之间不需要电流匹配,缺点在于接触和电池连接的工作量翻倍。
笔者认为,在协同效应、成本和生产良率方面,第一种方法的前景更加光明。此外,就目前的生产技术而言,这种方法所需要的改动也少得多。因此,我们将重点关注一体化双端叠层电池。
图8:典型的一体化双结叠层电池结构
底电池
底电池可以采用P型硅片或N型硅片。虽然大多数实验室项目都采用N型异质结电池,但P型电池其实也是可行的。其中,顶电池和底电池的极性需要相匹配,这一点至关重要。在集成一体化型电池结构中,顶电池通常采用“反型”结构,将P层作为底层。这意味着底电池也需要将P接触层作为底层,这一点可以通过背结N型电池或常规的P型电池来实现。
不论是N型电池还是P型电池,都需要在顶电池形成隧穿结以及一层(导电)光学层。底电池正面无需镀减反射膜,也无需金属化。由于底电池不导电,因此不适合采用标准氮化硅正面钝化工艺,可以选择晶硅/氧化铟锡(a-Si/ITO)异质结技术,或选择带ITO覆盖层的多晶硅钝化接触作为光学元件。
目前,钙钛矿沉积工艺还不适用于制绒表面,因此底电池的正面需要进行抛光。不过,只要背面是制绒表面,正面抛光只会造成些微损耗。
顶电池
顶电池通常采用反型结构,第一层为空穴传输层(HTL),可采用贺利氏生产的氧化镍或PEDOT:PSS。空穴传输层必须足够薄,以防止红外寄生吸收。
钙钛矿吸收体层的禁带宽度可调整至1.55-1.6 eV,以便用于双面电池。许多论文特别关注如何提高钙钛矿的禁带宽度,使其达到1.7-1.8 eV,并且设法解决宽禁带材料的潜在损耗较高这一问题。机缘巧合的是,在确定与双面电池相匹配的电流时,恰好可以选用最合适的钙钛矿种类。
对于电子传输层(ETL)来说,PCBM聚合物是一个不错的选择,其次是用于横向导电并作为减反射膜的ITO层。
金属化和电池连接
钙钛矿只能承受130-150 °C的温度,因此无法采用温度高达900 °C左右的标准烧结工艺,而必须用低温银浆取代标准银浆或铝浆。贺利氏可根据烧结温度和烧结时间的具体要求为客户提供定制浆料。
如果采用PERC电池作为底电池,那么目前还没有合适的低温铝浆。晶硅和铝的共晶温度为577 °C,要在低于这个温度的情况下形成局部背场可能比较困难。因此,背面金属化必须在顶电池沉积之前完成印刷和烧结。不过,这种无法保证清洁度的金属化工艺(含粉尘及有机残留物)可能会对后续工艺及顶电池的质量产生不利影响。此外,还可以选择涂覆背银栅线,该工艺目前在双面异质结技术和隧穿氧化层钝化接触(TopCon)技术中均有使用。
在任何情况下,正面(和背面)的低温银栅线的电阻率均高于标准银栅线。因此,虽然电流减半,但建议选择多主栅(MBB)结构来降低串联电阻,减少银浆用量。多栅线连接和低温焊锡涂层有可能成为电池连接工艺的理想选择。此外,也可以考虑采用导电胶的叠瓦技术。贺利氏可根据固化温度的具体要求为客户提供定制导电胶。由于电流只有5A左右,半片电池组件很可能没有明显优势。
封装相对来说,钙钛矿对湿度等环境因素更加敏感,因此优选双玻组件。考虑到近期1.5-2 mm玻璃取得的技术进步,对于任何双面组件来说,双玻结构都是优选解决方案。根据我们的计算,无框双玻组件的生产成本已经低于标准有框玻璃背板组件。
系统每块组件的电压提高了一倍以上;每片电池的开路电压从700 mV左右提高到1800 mV左右。如果将60片电池串联形成组件,总开路电压将达到108 V。因此,电池串长度必须大幅缩减,使电压处于1000 V或1500 V以下。若要解决这一问题,可以将多个子串并联(例如类似基于半片电池的组件设计),或采用组件级直流优化器或微型逆变器。
成本技术可行性解决之后,下一个问题自然是双结叠层电池技术在经济上可行吗?图9所示为当前市场价下无框双玻组件的生产成本。比较双面PERC单结电池与上述双结叠层电池的生产成本,可以发现双结叠层电池的效率需高出约4-5%(绝对值),其组件生产成本才会与双面PERC单结电池持平。如图6所示,这要求顶电池的效率达到20%左右。
图9:单结电池和双结叠层电池的组件生产成本与电池效率的关系
由于光伏平衡系统(BOS)带来的额外成本,从系统层面来看,每瓦组件价格会随着组件效率的提高而上涨。图10显示了当组件效率提升时,为保持光伏系统成本不变,组件价格的上涨空间。根据不同的BOS成本,组件效率每提高1%(绝对值),组件价格可提高约0.01欧元/瓦。
因此,双结叠层电池所需要的效率增益可以更低:只需要2-3%(绝对值)即可,不用达到5%(绝对值)。这样,组件生产成本只增加不到0.02欧元/瓦,而且可以转嫁到组件价格上。
图10:在保持光伏系统成本不变的前提下,组件价格的允许上涨空间与组件效率的关系
结论
钙钛矿太阳能电池如今已成为双结叠层电池的可行解决方案,可搭配晶硅底电池,并且在全球各地的多家实验室内都取得了良好的试验成果。未来几年内,有望开发出转换效率比单结晶硅电池高出2-3%(绝对值)的双结叠层电池。钙钛矿双结叠层电池在经济性方面也颇具吸引力。目前最大的挑战依然是钙钛矿电池缺乏长期稳定性。
主流晶硅电池与组件技术的发展也令钙钛矿双结叠层电池受益匪浅,如多主栅连接和双玻双面组件。要将钙钛矿顶电池直接叠加在PERC底电池上似乎颇具挑战性,不过可以选择异质结电池或TopCon电池作为底电池,从而进一步推动未来电池技术的发展。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2月27日,赣州市工业和信息化局发布关于向社会公开征求《赣州市未来产业发展实施意见(征求意见稿)》意见的公告,公告显示,以赣州经开区、南康区、赣县区、定南县为重点,抢抓能源革命机遇,重点布局太阳能、氢能等领域。太阳能加强钙钛矿太阳能电池、光伏建筑一体化等新型太阳能技术、材料和装备研
日前,有投资者向京山轻机提问,钙钛矿不仅可用于太阳能电池,也可用于LED和显示技术、量子技术等等。贵司的设备生产的钙钛矿是否可用于除太阳能电池以外的其它领域?或者是否具有提供相应设备的能力?2月21日,京山轻机表示,当前公司的发展战略聚焦于光伏装备和包装装备这两大核心业务。公司能提供钙
日本将根据内阁批准的第7个战略能源计划,到2040财年在电力结构中实现40%至50%的可再生能源份额,这将比2023年达到的22.9%有所增加,使可再生能源成为其能源系统的中心。根据日本经济产业省(METI)的计划,太阳能是可再生能源中的重点技术。考虑到日本缺乏合适的太阳能地点,政府的目标是在下一代太阳
2月20日,仁烁光能总部暨GW级钙钛矿产线项目建设启动仪式在经开区举行,标志着仁烁光能在钙钛矿产业化进程中迈入全新发展阶段。仁烁光能总部暨GW级钙钛矿产线项目总投资约12.5亿元,建设总面积约8万平方米,包含总部大楼、全球技术创新中心和GW级钙钛矿组件产线三部分。项目预计于2026年年初建成投产,
爱企查显示,近日,深圳市摩乐新能源科技有限责任公司正式成立。摩乐新能源由南方科技大学理学院副院长、化学系教授许宗祥团队与深圳恒丰投资和南科大资产经营管理公司共同投资。据公开资料显示,摩乐新能源于2024-12-02正式成立,公司已获得多项核心专利授权,并与国内外多家光伏龙头企业达成战略合作
2月6日上午,火炬开发区2025年第一季度重大项目集中动工仪式在“湾区药谷”医药科技加速器项目现场举行。本次动工项目共16个,投资额10亿元以上项目2个,总投资额超54亿元,涉及医药、光电、酒店、总部经济、基础设施等多个领域,其中包括双新特色科技产业研发制造基地项目项目由深圳黑晶光电技术有限
2月5日,衢州市委召开“工业强市、产业兴市”打造高质量发展建设共同富裕示范区市域样板推进会。会上共有76个项目签约,计划总投资594.5亿元。其中,年产5GW钙钛矿太阳能电池产业基地项目签约常山县。据悉,该项目计划总投资40亿元,用地面积500亩。一期计划投资15亿元,租用100亩厂房,建设年产1GW钙
日前,法国国家太阳能研究所(INES)校园内的CEA(法国原子能委员会)实验室开发的硅基串联钙钛矿太阳能电池已达到30.8%的效率记录。作为CEA和意大利3Sun(欧洲最大的组件制造商)领导的联合项目的一部分,所使用的串联架构超过了目前光伏超级工厂生产的传统硅技术约29%的理论效率限制。大多数国际记录
从鄂尔多斯高新区发布官微获悉,1月24日,高新区管委会、东胜区人民政府与怀宁益盛鑫磊半导体科技有限公司成功签约年产1GW钙钛矿薄膜太阳能电池项目战略合作协议。据了解,该项目将建设200MW、400MW生产线和配套的工艺研发实验室,主要生产钙钛矿薄膜太阳能电池组件,投产后可年产1GW钙钛矿薄膜太阳能
北极星储能网讯,1月21日,以“聚新质之力,绘低碳新篇”为主题的广东能源天业冷链分布式光伏项目投产暨光储充示范站开业仪式圆满举办。广东佛山市禅城区大湾区办常务副主任王大云同志出席活动并为该项目进行“超充示范项目”授牌。广东能源天业冷链光储充示范站位于广东省佛山市天庄冷链物流园内,是
北极星太阳能光伏网获悉,近日,据安徽省投资项目在线审批监管平台显示,位于安徽毛集试验区的钙钛矿-异质结叠层高效电池研发中试线项目于1月17日通过备案。该项目或由淮南益恒光伏科技有限公司建设,据了解,该项目分为多期建设,其中一期新建2.4GW异质结叠层高效电池生产线及100MW钙钛矿叠层电池中式
三年,用三份提案,构建起新能源产业可持续发展的“绿色闭环”。翻看第十四届全国政协委员、人口资源环境委员会委员、中国华润(集团)有限公司环境健康和安全部专家张利文的履职档案,三份提案串联起中国新能源产业绿色发展的关键进程。这位深耕环保领域30余年的“老兵”,用精准的切口推动光伏回收政
2月28日,国家统计局发布中华人民共和国2024年国民经济和社会发展统计公报。初步核算,全年国内生产总值1349084亿元,比上年增长5.0%。全年人均国内生产总值95749元,比上年增长5.1%。国民总收入1339672亿元,比上年增长5.1%。全员劳动生产率为173898元/人,比上年提高4.9%。其中提出,全年规模以上工
在光伏产业加速向高效化、场景化演进的新周期,协鑫集成以技术迭代速度与产品价值深度双向突破,再次向市场展现了“协鑫速度”。截止2025年2月,协鑫集成GPC2.0电池效率突破27.5%,较去年12月底产品发布提升0.4个百分点,产能爬坡速度超预期,有望提前实现规模化量产。基于容量、收益、可靠超配优势的G
近日,安徽省蒙城县生态环境分局发布了2GW新型高效碲化镉薄膜太阳能电池(一期)项目环境影响评价第一次公示。根据公示内容,该项目建设单位为安徽繁星能源科技有限公司。本次拟租赁蒙城经济开发区内生产车间59,934平方米,按碲化镉发电玻璃生产车间工艺要求进行改造,购买、安装碲化镉发电玻璃加工生
2月27日,赣州市工业和信息化局发布关于向社会公开征求《赣州市未来产业发展实施意见(征求意见稿)》意见的公告,公告显示,以赣州经开区、南康区、赣县区、定南县为重点,抢抓能源革命机遇,重点布局太阳能、氢能等领域。太阳能加强钙钛矿太阳能电池、光伏建筑一体化等新型太阳能技术、材料和装备研
日前,有投资者向京山轻机提问,钙钛矿不仅可用于太阳能电池,也可用于LED和显示技术、量子技术等等。贵司的设备生产的钙钛矿是否可用于除太阳能电池以外的其它领域?或者是否具有提供相应设备的能力?2月21日,京山轻机表示,当前公司的发展战略聚焦于光伏装备和包装装备这两大核心业务。公司能提供钙
日本将根据内阁批准的第7个战略能源计划,到2040财年在电力结构中实现40%至50%的可再生能源份额,这将比2023年达到的22.9%有所增加,使可再生能源成为其能源系统的中心。根据日本经济产业省(METI)的计划,太阳能是可再生能源中的重点技术。考虑到日本缺乏合适的太阳能地点,政府的目标是在下一代太阳
北极星太阳能光伏网获悉,2月10日上午,江苏省淮安市清江浦区项目攻坚暨优化营商环境大会召开,会上提到,伏图拉项目一期已经全面竣工。据悉,在清江浦区投资建设的伏图拉N型电池片淮安基地项目是意大利伏图拉新能源集团布局光伏垂直一体化产能的重要开端,项目计划总投资50亿元,计划分两期建设,建成
自获得国家重点研发计划立项批复后,东方日升全球光伏研究院(以下简称“研究院”)积极推动HJT+技术的创新发展。2月16日,经国家太阳能光伏产品质量检验检测中心权威认证,研究院研发的钙钛矿/晶硅异质结叠层太阳能电池成功实现了30.99%的转化效率。这一突破不仅彰显了研究院深厚的技术积淀和卓越的创
近期,印度光伏制造商WaareeEnergiesLimited宣布,其位于印度古吉拉特邦Navsari区Chikli的Degam村的1.4GW太阳能电池工厂正式投产。该工厂包含三条PERC电池生产线,每条年产能467MW,最大可生产210mm×210mm规格的电池片,日均产能达448,800片,核心设备使用寿命为5年。根据Waaree今年早些时候曾宣布,
2月4日,商务部、海关总署公布对钨、碲、铋、钼、铟相关物项实施出口管制的决定,包括碲,碲是生产碲化镉(CdTe)薄膜太阳能电池所需的原材料。原文如下:根据《中华人民共和国出口管制法》《中华人民共和国对外贸易法》《中华人民共和国海关法》《中华人民共和国两用物项出口管制条例》有关规定,为维
光伏行业不仅内卷,资本市场更是一片沉寂。这个需要集体反思。早在2021年7月,在光伏行业最为亢奋的时候,本公众号《光伏行业会诞生万亿市值公司吗?》曾经分析,光伏行业本身面临很多现实情况,很难支撑超级巨头,更是难以支持万亿市值。一语成谶。如今,光伏行业别说万亿市值,千亿市值也仅剩两家,
日前,个别省发布“光伏领跑者计划”,组件转换效率要求为24.2%,额度为2GW,占光伏风电保障性整体指标的20%。在过去十数年间,国家能源局数次下发领跑者计划,促进了光伏产业有序发展并加快了先进技术的批量化落地,为最终实现平价上网提供了强力支撑。然而,针对此次领跑者计划,引来了许多讨论,有
2月27日,中国光伏行业协会正式发布《中国光伏产业发展路线图(2024-2025年)》(以下简称“《路线图(2024-2025年)》”)。《路线图(2024-2025年)》包含一年一度更新的各产业链环节最新技术进展情况,以及对于到2030年的技术发展趋势预测。这已是协会连续九年组织专家编制《中国光伏产业发展路线图
2025年2月27日,由中国光伏行业协会主办的“光伏行业2024年发展回顾与2025年形势展望研讨会”在北京成功召开。中国光伏行业协会名誉理事长王勃华出席会议并作“2024年光伏行业发展回顾与2025年形势展望”的主旨报告。PPT全文如下:
2025年伊始,光伏行业内不同技术路线的博弈持续升温。各类关于组件发电量的数据层出不穷,真伪难辨。事实上,从技术研发和产品开发角度,光伏的核心逻辑始终围绕度电成本的持续降低展开。衡量一项技术是否真正领先,关键在于在相同资源条件下,能否实现最优度电成本,从而为客户创造更大价值。客户价值
近日,欧洲权威测试机构TüV北德进行了日本实证项目测试。数据显示,最新一代N型TOPCon组件在2024年10月至2025年1月四个月期间(整体测试为期一年),凭借高双面率、低辐照发电性能以及近海环境下的高可靠性,综合发电量明显优于N型BC组件,平均单瓦发电量高7.78%,最高单月平均发电增益达9.84%。这一
近日,河北省工业和信息化厅发布了《关于公布2024年第三批河北省工业企业研发机构名单的通知》。经主管部门审定,英利能源发展有限公司光伏技术实验室凭借在光伏领域的技术研发实力与卓越成果,顺利通过2024年河北省工业企业研发机构A级认定。河北省工业企业研发机构认定工作,由河北省工业和信息化厅
近期,TaiyangNews发布了2025年2月版《TOPSOLARMODULESListing》报告。在本月的列表中,收录了来自32家公司的50款已实现商业化量产出货的太阳能组件——本月所有公司和组件情况与1月版均一致。如前文所述,2025年2月TOPSOLARMODULESListing列表与上月保持一致。爱旭的Comet2U系列组件继续保持领先,其
2月12日,四川省科学技术厅下发了《关于支持组建四川省陶瓷基复合材料、晶硅光伏技术创新中心的函》。由通威太阳能(成都)有限公司牵头组建的四川省晶硅光伏技术创新中心,经过公司申报、建设方案论证、专家会议答辩、现场核查、省科技厅审批等程序,成功获得组建批复,成为四川省科技厅规划建设的首
日前,五部门关于调整重大技术装备进口税收政策有关目录的通知,通知见下:一、《国家支持发展的重大技术装备和产品目录(2025年版)》(附件1)、《重大技术装备和产品进口关键零部件、原材料商品目录(2025年版)》(附件2)和《进口不予免税的重大技术装备和产品目录(2025年版)》(附件3)自2025
2月12日,生态环境部、工业和信息化部、住房城乡建设部、交通运输部、农业农村部联合发布《国家重点推广的低碳技术目录(第五批)》。包括大型光伏电站智能柔性控制技术与装置、钙钛矿太阳能电池规模化应用技术、新能源光伏气膜一化应用技术、分布式光伏直流接入电解铝柔性直流微网供电技术等。原文如
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!