登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
由于其制造成本低、较易操作、产量高和原料允差较宽,定向凝固(DS)是太阳能电池用多晶硅(mc-Si)生产的主要方法。DS方法的优越性使得mc-Si的光伏(PV)市场份额稳步扩张。但是,由于mc-Si的结构缺陷(如晶界和高密度位错),mc-Si制造的太阳能电池在光电转换效率方面受到限制。为了克服mc-Si的缺点,提出用有籽晶DS技术生产低缺陷密度的准单晶硅。在此技术中,用单晶硅籽晶把熔体与坩埚底部隔离,能避免在坩埚底部形成小尺寸晶粒。由此,原料熔融过程中必须很好地保存籽晶。为了很好地保存籽晶,要求二个条件:(a) 在硅范围内有足够大的温度梯度;(b) 尽可能平坦或稍凸的籽晶/熔体界面。稍凸的界面有利于随后块晶体生长,因为它促进晶粒向外生长,增大晶粒尺寸。得到这二个条件的直接方法是修改置于加热器下的隔热环的形状和位置。因此,研究在籽晶保存阶段,隔热环几何结构对硅范围内籽晶/熔体界面和温度梯度的影响是至关重要的。
有关优化晶体生长过程已进行了许多研究。采用瞬态3D数值模型,Delannoy等人研究过ECM炉内二种不同直径支架对凝固硅锭中热梯度和生长速率的影响。Miyazawa等人用DS过程中的2D/3D混合模型进行计算,研究坩埚形状、尺寸和材料性质对界面形状的影响。Wang等人和Ma等人比较了有和没有隔热的生长系统间的等温形状和能耗。但是,很少有研究者针对隔热环几何结构对有籽晶DS系统内籽晶保存的影响。
本研究中,考虑熔体对流、氩气流动、固体热传导和热辐射,以及相变后,为工业用硅锭有籽晶DS过程建立了一个全局模型。在此模型的基础上,我们用数值方法研究隔热环几何结构不同时,籽晶保存阶段期间硅范围内的籽晶/熔体界面形状和温度梯度。结果对优化工业硅锭有籽晶DS过程中保存籽晶的热区设计有重要参考价值。
模型描述
图1是生长用于太阳能电池的准单晶硅锭的籽晶工业化DS系统的结构和计算网格的示意图。生长系统的组成是:硅区(籽晶和熔体),气体区,加热器,坩埚,基座,热交换台,隔热装置和炉壁。为了提高计算效率,采用结构化/非结构化混合网格方案。整个炉内的全部范围细分为一些块区,每一区用结构化或非结构化网格离散化。结构化网格应用于具有规则几何边界的块区,而非结构化网格应用于气体流动区,那里的几何边界非常不规则。而且进一步完善靠近坩埚壁的网格和气体区中的网格。
为了计算方便而又有可接受的折中精度,做出如下的主要假设:(a) 炉结构的几何形状是轴对称的,(b) 系统是准稳定状态,(c) 辐射热传递模拟为漫-灰表面辐射,(d) 熔体流是不可压缩的层流,(e) 熔体密度随温度变化用博欣内斯克近似(Boussinesq approximation )考虑,(f) 炉腔内氩气是理想气体且全透明的。模拟所有固体和液体表面间辐射热传递的方法,熔体对流和固体热传导的控制方程及边界条件在有关文献中已有说明。气流的控制方程和边界条件也在文献中描述了。在目前的模拟中,炉压为0.6 bar;腔室外壁温度为300 K;氩气流速为30L/min。
结果与讨论
本文研究了4种情况,它们的隔热环(图1中标号是8)几何构成不同。如图1所示,有隔热环的初始结构成定义为Case 1;修改后没有隔热环的结构定义为Case 2;相关于Case 1减少a的修改结构定义为Case 3;相关于Case 1增加h的修改结构定义为Case 4(即,隔热环置于承受器底部下面)。在籽晶保存阶段,底部绝热是固定的,热区完全封闭。坩埚底部的位置参照为零。4种情况中,调整加热功率确保籽晶高度在规定高度(即,中心位置处的籽晶高度约为10mm)。
假定熔点1685K等温线是籽晶/熔体界面。图2(a)显示4种情况下籽晶/熔体界面的偏移。4种情况的界面彼此大不相同。Case 1的界面完全凹向晶体,靠近坩埚侧壁处非常陡。Case 2的界面在中心区凸出,靠近坩埚侧壁处凹进。Case 3的界面偏移几乎与Case 1相同,不过靠近坩埚侧壁的界面不太凹。Case 4的界面是完全凸向熔体,与Case 1比较,偏移的绝对值比较小。结果证明,隔热环几何形状的修改能有效改变籽晶/熔体界面的形状。
在硅区内,大部分热量通过籽晶/熔体界面从熔体顶部传递到籽晶底部,这就建立了给DS提供合适条件的垂直温度梯度。同时,也有经硅区侧壁进入或出去的热流密度。图2(b)显示通过坩埚侧壁的热流密度。图2(b)中显示的热流密度负值代表经侧壁出去的热流密度。很明显,Case 1、2、3中,热流密度经上部侧壁流入硅区,经下部侧壁从硅区流出,而在Case 4中,热流密度经整个侧壁流入硅区。由于热流密度的方向几乎与界面垂直,热流密度的分布引起籽晶/熔体界面变形。Case 1、2、3中,硅区侧壁附近籽晶/熔体界面处的热流密度向外倾斜,而在Case 4中它向内倾斜。所以,Case 1、2、3中侧壁附近的界面是凹进的,而在Case 4中它是凸出的。(见图2(a))。进而,因为通过硅区侧壁的热流密度绝对值足够大,中心区附近籽晶/熔体界面的变形趋势与Case 1、3和4中的侧壁附近一样。但是,在Case 2中通过侧壁的热流密度绝对值小。因此,靠近中心区的界面变形趋势与靠近侧壁的不同。此外,Case 1中靠近籽晶/熔体界面通过侧壁的热流密度绝对值大于Case 3和4。故Case 1的偏移大于Case 3和4。
图2(b)所示的通过硅区侧壁的热流密度主要由通过承受器(susceptor)外侧壁的热流密度决定。承受器外侧壁主要与加热器交换热量,通过热辐射隔离。图2(c)给出通过承受器外侧壁的热流密度。图2(c)中显示的热流密度负值代表经承受器外侧壁出去的热流密度。在Case 1和3中热流密度经上部外侧壁流入承受器,经下部外侧壁流出承受器,而在Case 2和4中热流密度经整个外侧壁流入承受器。原因是,在Case 1和3中隔热环阻挡了从加热器到承受器下部外侧壁的辐射。因为相对于Case 1,Case 3中距离a减少,隔热环的阻挡作用减弱,因而Case 3通过外侧壁的热流密度比Case 1小。所有情况下(Case 1除外),通过承受器外侧壁的热流密度方向与通过硅区侧壁的方向是一致的(见图2(b)和2(c))。这是因为在Case 1值中,通过承受器外侧壁进入的热流密度不能补偿下部侧壁附近通过承受器和坩埚侧壁向下传导的热流密度,这需要补充经硅区侧壁出去的热流密度。
足够大的垂直温度梯度有利于籽晶保存的控制。我们采用沿硅区中心线垂直方向上的温度剖面研究硅区内的温度梯度。图2(d)显示沿硅区中心线垂直方向上的温度剖面研究硅区内的温度梯度。Case 1的垂直温度梯度 比Case 2的大得多。这表明,隔热环有助于形成大的温度梯度以保存籽晶。很容易解释这一点,因为在绝热体和承受器间垂直方向的热辐射通道被隔热环阻挡了。大部分热量就通过硅向下传递。与Case1比较,在Case 3中h增加或Case 4中a减少时,前面提到的通道的热阻弱化。经硅区向下的热流密度减少。因而,硅区轴向温度梯度减小。尽管如此,与Case1比较, Case3或Case4中垂直温度梯度的减少是小的。这些结果解释,适当的修改隔热环几何形状能有效地改变温度梯度。
结论
建立了研究工业用硅锭有籽晶DS中籽晶保存的2D轴对称全局模型。根据此模型,研究了隔热环几何结构对硅区内籽晶/熔体界面和温度梯度的影响。结果揭示,修改隔热环的几何形状能有效地改变籽晶/熔体界面形状。隔热环有利于形成大的温度梯度。而且,适当修改隔热环的几何形状能有效地改变温度梯度。因此,我们能适当地修改隔热环的几何结构,以得到平坦或稍凸的籽晶/熔体界面及合适的温度梯度,这些有利于籽晶保存。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
5月30日,北极星太阳能光伏网发布一周要闻回顾(2025年5月26日-5月30日)。政策篇两部委:推动绿电直连,新能源自用不低于60%、上网不高于20%,按规缴费5月21日,国家发改委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》,探索创新新能源生产和消费融合发展模式,促进新能源就近就
近日,云南省发展改革委依托省级重大项目清单,建立2025年云南省重点民间投资项目库,共纳入382个项目,总投资3456.62亿元,覆盖能源工业、能源以外工业、农业、文化旅游、数字经济、商贸物流、交通、社会事业、生态环保等行业领域。其中包含新安硅材料(瑞丽)有限公司1-4#炉余热综合利用发电项目、临
5月27日上午,瓦努阿图副总理科纳坡一行莅临天合光能德阳基地参观交流,落实去年中瓦两国发布的联合声明,在应对气候变化、绿色低碳等领域务实合作,推动《联合国气候变化框架公约》及其《巴黎协定》全面有效实施。四川省外办副主任李怀强、德阳市委副书记朱莉、德阳市委外办主任顾申伟、什邡市委书记
5月27日,复旦大学迎来建校120周年,天合光能受邀参加纪念大会。值此复旦双甲子华诞前夕,天合光能董事长、复旦大学校董、兼职教授、光伏科学与技术全国重点实验室主任高纪凡在复旦园为师生带来了一堂充满时代脉搏与创业智慧的思政课,以跨越三十年的创业实践向青年学子诠释了科技报国的时代担当,正如
5月26日,亿晶光电发布公告称,公司控股股东深圳市唯之能源有限公司(以下简称“唯之能源”)持有的2亿股无限售流通股将被司法拍卖,占其所持公司股份的100%,占公司总股本的16.90%。若本次拍卖完成,唯之能源将不再持有亿晶光电股份,公司控股股东及实际控制人将发生变更。此次拍卖由广东省深圳市福田区
据泰媒报道,泰国投资委员会(BOI)19日召开会议,出台4项措施帮助泰国企业应对美关税和外部挑战。一是停止对供给过剩或易受美国及其他国家贸易限制行业的投资促进优惠,包括太阳能电池及面板制造,部分汽车零部件(铅酸电池、装饰件等不影响车辆驾驶性能和安全性的配件),金属切割,位于工业园区外且
记者从中国广核集团(以下简称中广核)获悉,5月27日,中广核烟台招远400兆瓦海上光伏项目全容量并网发电。作为中广核贯彻新发展理念、践行“双碳”战略的创新实践,该项目成功应用自主研发的双面双玻海上光伏组件等一系列创新产品,并形成可复制的海上光伏项目施工成套工艺体系,对我国海上光伏规模化
从去年的中央经济工作会议到今年的《政府工作报告》,都释放出规范过度竞争的明确信号。近期,国家市场监督管理总局和国家发改委相继出台政策措施整治内卷式竞争问题,将为中国光伏产业提供更加公平、健康、有序的市场竞争环境,以创新推动新质生产力发展的光伏企业快速穿越行业周期。5月19日,国家市
2025年5月18日,晶澳迎来了成立20周年的历史性时刻。回顾晶澳的发展历程,没有大起大落,而是一直依靠产品力和口碑,以持续领跑的姿态,在光伏产业中走出了一条稳健的韧性成长之路。当众多同期崛起的行业巨头相继折戟沉沙,这家诞生于2005年的“元老级”企业,却始终稳居全球光伏产业“第一排”——这
北极星储能网获悉,5月20日,内蒙古鄂尔多斯市科学技术局发布鄂尔多斯6家新型研发机构发布9项前沿科技成果,其中,北京大学鄂尔多斯能源研究院张宇闻发布“iMEMS储能电池能量管理系统技术”,该技术可实现储能系统内部微电网的能量控制,对智能电网的能量实施正确、高效的能量自动分配和管理。鄂尔多斯
5月20日,据文山招商平台消息称,云南文山广南县发布了年产5GW高效太阳能电池片生产项目的招商引资计划。建设内容:项目结合上游优势企业,引进太阳能电池片生产企业,建设年产5GW高效太阳能电池片生产线,包括产品生产区、产品质检区、产品仓储物流中心以及相关基础配套设施等,拟计划以合资、合作、
近日,欧洲单晶硅锭及硅片制造商NorSun宣布,将永久关闭其位于挪威rdal的工厂,并申请破产。与此同时,公司表示将专注于推进在美国建设的年产能5GW硅片工厂项目。这一决定标志着又一家欧洲光伏企业因市场困境而退出本地市场。NorSun的rdal工厂自2023年9月起暂停运营,原因是欧洲市场需求不足以及中国低
近日,美国能源部(DOE)宣布提供7100万美元的财政拨款,用于支持本土太阳能硅片和电池制造。该笔款项将覆盖18个项目,旨在解决国内太阳能制造供应链的缺口并为太阳能技术开辟新市场。在这其中,硅太阳能制造和两用光伏孵化器资助计划(SiliconSolarManufacturingandDual-usePhotovoltaicsIncubatorFundi
《越南+》报道,越南广宁省举行仪式,为越南晶科太阳能科技有限公司(隶属于晶科能源控股有限公司)投资超过3.65亿美元的晶科太阳能(越南)硅片技术项目颁发投资许可证。该项目预计2021年9月底开工建设,力争2021年12月生产首批硅片产品。
俄罗斯光伏制造商HevelSolar的控股股东表示,已开始在立陶宛和波兰之间的俄罗斯飞地加里宁格勒(Kaliningrad)建设一座千兆级工厂,生产太阳能硅锭、硅片和异质结(HJT)电池。
2019年,中国光伏新增装机量达到40GW,这一得到国家能源局和中国光伏行业协会“权威”认证的预测,也是整个行业的普遍期待。实际上,我们不得不苦涩的承认,在中国上半年新增光伏装机量仅11.4GW的情况下(其中分布式4.6GW,同比下降61.7%,集中式电站6.8GW,同比下降43.3%),多数企业不得不寄希望于下半
根据《2019上半年回顾与展望》的报告,单晶的市占率首次超过多晶并远远超过多晶。对此,协鑫、阿特斯等多晶龙头似乎早就预料到,从两年前就开始重新布局铸锭单晶。半年前,以鑫单晶为代表的铸锭单晶开始了迅猛的宣传攻势,据业内人士透露,其实铸锭单晶的技术并没有完全准备好,只是迫于单晶的强势而不
一、多晶硅片的使命国内最早使用铸锭炉生产硅片的企业是英利,不是赛维。英利早在90年代末就购买了3台GT铸锭炉生产多晶硅片。由于铸锭炉对硅料质量要求低,单晶的锅底料、头尾料,硅料企业生产的不能用于拉单晶的硅料,都可以用于生产多晶硅片,在很大程度上弥补了太阳能级多晶硅不足的问题。再加上铸
摘要:相比于直拉单晶硅,定向凝固铸造法生产的晶体硅材料具有更好的性价比,但含有较多的杂质、位错等晶体缺陷。更高品质、更低成本的太阳能电池始终是业界追寻的目标。本文以传统铸造法生长多晶硅技术为基础,介绍了目前几种主流的晶体硅铸造工艺方法,包括全熔工艺制备多晶硅锭,半熔工艺生长高效多
试问2017年光伏圈什么最火mdash;mdash;单多晶之争,无论是上游单晶占比,还是光伏电站建设的选择,单多晶大战都呈现出越来越激烈的态势,不禁让人感叹,本是同根生,相煎何太急啊,不过也正是由于这个原因,想通过单多晶之争来大幅拉低市场价格的机遇党还是不要再等了吧。小编认为,单多晶之争实际上是
3月28日,海口高新技术产业开发区管委会发布了《海口国家高新区产业发展指导目录》,由鼓励发展类、规模限制类、说明和附录四部分构成,其中鼓励发展类采用正面引导方式,以高新区3+X产业框架为基础,重点聚焦生命健康、互联网、轻型低碳制造三大产业集群及现代服务业,提出24个产业领域,72个产业细分
全球最大的单晶硅光伏产品制造商西安隆基硅材料股份有限公司(以下简称隆基股份)上半年财报显示,2016年上半年,单晶硅PERC太阳能电池产量达到900MW。从2016年上半年财务报告可知,达到900MW的PERC太阳能电池产量使公司在中国向高效电池的迁移领先于竞争对手,并且在今年下半年将进一步提高PERC产量。
“十五五”是我国经济迈向高质量发展的关键阶段,也是全球能源格局深刻调整的重要时期。在当前和今后一段时间,我国能源电力将持续处于清洁低碳、安全高效转型的大趋势大环境中,如何更加有效地发挥电力在国民经济中的基础和先导作用,促进国家重大发展战略和目标的实现,更好地满足人民群众日益增长的
国家发展改革委、国家能源局近期发布《关于有序推动绿电直连发展有关事项的通知》(以下简称《通知》),国家能源局有关负责同志接受采访,回答记者提问。问:什么是绿电直连?答:直连是指电源不直接接入公共电网,而通过与用户直接连接的电力线路向单一用户供电,供应的电量可以清晰物理溯源。一是绿
5月30日,北极星太阳能光伏网发布一周要闻回顾(2025年5月26日-5月30日)。政策篇两部委:推动绿电直连,新能源自用不低于60%、上网不高于20%,按规缴费5月21日,国家发改委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》,探索创新新能源生产和消费融合发展模式,促进新能源就近就
北极星电力网获悉,5月27日,国家能源集团雄安能源有限公司发生工商变更,注册资本由10亿人民币增至25.6亿元。国家能源集团雄安能源有限公司成立于2020年12月21日,由国家能源投资集团有限责任公司全资持股,法定代表人为蔡兆文。经营范围包括电力(热力)能源的开发与建设(仅限外埠经营)、经营管理
近日,国家发改委、国家能源局印发《关于有序推动绿电直连发展有关事项的通知》。政策直指单一利用公用电网方式下的高比例新能源消纳困境和碳壁垒,提出“主网和微网协同发展”的思想,同时带动发电、用能和电网体系的结构性变革,将对我国能源体制、市场规则和企业角色带来全方位转变。政策背景:促进
国家发展改革委、国家能源局近期发布《关于有序推动绿电直连发展有关事项的通知》(以下简称《通知》),国家能源局有关负责同志接受采访,回答记者提问。问:什么是绿电直连?答:直连是指电源不直接接入公共电网,而通过与用户直接连接的电力线路向单一用户供电,供应的电量可以清晰物理溯源。一是绿
文/王海滨作者系中化能源股份有限公司正高级经济师2025年1月20日,唐纳德#x2022;特朗普宣誓成为美国第47任总统,同日签署行政令宣布美国将再次退出《巴黎气候协定》,并宣布美国进入国家能源紧急状态,将大力开发化石能源。这是世界气候治理和能源低碳转型的一个重要挫折。这一倒退有特朗普个人的原因
当前,我国新型电力系统加快建设,新能源逐步向主体电源演进,终端消费电气化水平不断提升,电力远距离配置能力不断增强,新时代电力发展成效显著。与此同时,电力供需平衡压力叠加系统安全稳定风险,电网转型发展问题亟待破解。新时代电网发展要统筹把握好网架结构与支撑电源、新能源与传统机组、交流
近日,国家发改委、国家能源局印发《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号),探索创新新能源生产和消费融合发展模式,促进新能源就近就地消纳。文件提到,本文所指的绿电直连是指风电、太阳能发电、生物质发电等新能源不直接接入公共电网,通过直连线路向单一电力用户供
MeyerBurgerTechnologyAG(梅耶博格)旗下美国子公司MeyerBurgerAmericasLtd.日前宣布,已决定关闭位于美国亚利桑那州古德伊尔(Goodyear)的太阳能组件工厂,并将进行永久裁员。据报道,梅耶博格已于2025年5月22日依据州法律向员工发布《工人调整和再培训通知》(WorkerAdjustmentandRetrainingNotifi
5月21日,国家发改委、国家能源局联合印发《关于有序推动绿电直连发展有关事项的通知》,探索创新新能源生产和消费融合发展模式,促进新能源就近就地消纳。根据文件,本文所指的绿电直连是指风电、太阳能发电、生物质发电等新能源不直接接入公共电网,通过直连线路向单一电力用户供给绿电,可实现供给
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!